Adaptive Batch Update in TCAM (ABUT) : How
Collective Optimization Beats Individual Ones

Ying Wan!, Haoyu Song?, Yang Xu’, Chuwen Zhang!, Yi Wang*>, and Bin Liu!»

ITsinghua University, China, “Futurewei Technologies, USA
3Fudan University, China 4Southern University of Science and Technology, China
>’Peng Cheng Laboratory, China

Email: wanyl6@mails.Tsinghua.edu.cn

&< .;.'. : i/f g 7" :"
sy b S
%:a‘"'f;:“‘z.f'.-:';.;;j}% § F

Tsinghua University

Outline

* Background
* Related work
* Two key algorithms of ABUT:

* Incremental rule grouping

* Optimal TCAM placement calculation
* Performance evaluation

e Conclusion

Background TCAM for rule tables

* The de facto industry standard for rule tables
* line-speed lookup speed

 flexible matching pattern

* The placed rules are arranged in priority order
 TCAM returns the first matched rule

[t is the highest-priority matched rule that counts

Addr Rules

0 001*Q***
1 11%*00**
o) 0]] %% **% 1
Packet: 3 11%*]1%%* T Lowest Matched
(01111011) 4 ()] %%] %% _1_>el:;?)l;g. address: 2
5 Q***101* —1—
m-1

Fig.1. The mechanism of TCAM

Background TCAM update problem

* A new rule insertion incurs the moves of existing rules

rules must be placed by the topological order of the rule relation graph

design algorithms to compute the update scheme with fewer rule moves

 Batch TCAM update requirements

A high-level policy in SDN and IDN can be converted to multiple TCAM rules
TCAM applications present a batch update pattern (e.g., TCAM as a cache)
Conventional applications requires batch rule table updates (TE, IP source guard)

Individual updates accumulate to form a batch for switch (HP-5406, Pica-3290)

., overlapping region
R Predecessor Successor

g

Priority: A> B

Fig.2. The rule overlapping relationship and the rule relation (DAG)

Background — challenges of TCAM update

* Placement cost ()

* Proportional to the number of rule moves

 Alarge indicates the long interrupt of the TCAM lookup (packet loss)

* Compute cost ()
* The time overhead to compute the rule move scheme

 Alarge fails to sustain the update requests (throughput and latency)

* Exist works either optimize or for individual update

* Cumulative placement and compute cost

Related works

* Individual update algorithms
* Per-group priority: PLOHOTI’2000), FFU(Globecom 2006)
* Per-rule priority
 Single chain: Cao(HOTI’2000), I'_,,(TON’2018)

* Hybrid chain: FastRule(JSAC’2019)
* Range chain: RuleTris(ICDCS’2016), I',,,(TON’2018)

* “Semi-Batch” update algorithms:
» CoPTUA(TOC’2004), Hermes(CoNext’2017), COLA(INFOCOM*2020)

TCAM update algorithms

L
iﬂdi'..?jdual batch
¥ . 1 CoPTUA
per-group priority per-rule priority Hermes
: } 1 COLA
prefix length topology order single chain hybrid range chain
PLO FFU Cao FastRule RuleTris
I down th
Tbetter t= T TTTTT better tP

Fig. 3. Classification of TCAM update algorithms.

ABUT——The target and architecture

* Target:
e A batch contains n rules to be inserted
< : < ,
=1 =1
« { , }and{ 10— } is the batch and individual update cost

* Architecture
* Rule grouping algorithm
* Incremental grouping rules
* Batch update algorithms
 placing rules according to their grouping IDs (gid)
* dynamic programming to compute the optimal placement
{5t | B I 1

| ABUT I
—_—) e — — Data Plane
Switch OS

Fig.4. The architecture of TCAM

ABUT——incremental rule regrouping

* topological-order based rule grouping

* optimal in terms of the number of resulting groups

(1)

_ 0 r has no successor
A =

max{r'.gid} +1 ' € successors of r

* regroup the rules that are possibly changed due to updates

* regroup rules in their priority order

* the change of . only affect . (1isthe predecessor of)
* insertion rule :regroup
* deleled rule :regroup ifandonlyif . == . +1
* regrouped rule (. is changed from to):
If > :regroup ifandonlyif . <=

If < :ifandonlyif . == +1

Example incremental rule regrouping

* DAG: rule relation graph
* add thenewrules(, o, 1), mark the new rules
* remove the rules to be deleted (g, 1, »2), mark its specific
predecessors()
* Lg: a link list that link the rules in their priority reverse order

* Regroup a rule after all its successors has been assigned the correct GIDs

* Only regroup the encountered marked rules
e mark its s Initial DAG ©

Initial L --.)IQ.--@ J@I ;,q

Updated DAG @ @ @
Updated Lg ﬂ‘ ﬂ
0 1 : 1

Regrouped Ly (D) --¥B)f -- "-9@-" ’Ql- 19

0 0 1 2 2

Fig.5. An example of the fast incremental regrouping

ABUT

* Rules are placed in their GID orders(The legitimate placement):

optimal TCAM placement calculation

is the number of TCAM entries, rules, groups, rules of — group,
respectively
kE—1 k—1
T .\ n =4 '?_."'I-!
ﬁ-‘L — (H i\z) * (m) — (HJ\E) * ! 1 (2)
i = n nl(m—n)!

* dynamic programming to minimize placement cost (write and nullify operations)

. C . : the GID of the rule in the entry and the (j-1)-th rule
. : the minimum costif 0: —1 areusedtoplace 0: —1.
Cle-1][7] + (T[e-1].gid # -1
Clilljlemin § o W01+ QE-Hed 70
Cli-1][7-1] + (T[z-1]).gid # R[j-1].gid)

* Adaptive empty entry distribution without extra cost
* The two ways in Eq.3 give the same cost

Example optimal TCAM placement calculation

* Placement cost
* The minimized TCAM write and nullify operations
e Batch updates
 Delete O, 1, and 2
e Insert , O,and 1
« anypathfrom O O to represents an optimal placement.

DAG Placement DAG GID R[j-1].gid @@@ @@ @@

il Tfi

K) ® 1li-1).gid[\N[o] 1] 2] 3] 4] 5] 6] 7]
0 O +00 +00 +00 +00 +00 +00 +00
1 @ @ T I\l +00 +00 +00 +00 +00 +00
2 @ @ @ j I ‘: 2\-4—00 +00 +00 +00 +00
3 @ —f E 43 ‘l i.\ +00 +00 +00 +00
4 @ @ T 5 5 ;_.:&3 .24. +00 +00 +00
© e BB AR AR AN
5| @ D (5] 22303 P 5o
: @ @ 6| 3 43_*32 43‘.44“ 4 46_. +00
6 @ 7 1*7‘1*244*; 5.,47
7 ‘ @ @ [4?4 b
‘ ONSERIEHHRIRA
@ (5| @ ©) O, D) 13*3“6*6“6“6*6*6

(a) Before update (b) Rule regrouping (c) Calculation of optimal placement

Fig.6. An example of dynamic programming for optimal TCAM placement

Performance evaluation——Experiment setup

 Compare objects

Single Chain (SC)!!
Range Chain (RC)!

Batch update: COLA SC, COLA RC
Metric

Rule grouping performance

Effect of empty entry distribution
Performance on LPM and multi-field rule tables
Scalability on batch size (), TCAM capacity (), TCAM fill-rate ()
Dataset

CAIDA (1~
ACL(1~
Openflow rules (1,

2)

1~

10) and Stanford(1,
5) and FW(

°)

TABLE I
RULE TABLES USED FOR PERFORMANCE EVALUATION
Type Name Source Feature Field # Size
LPM cdl - ¢d10 CAIDA real 1 ~1M
LPM sfl, sf2 Stanford real 1 ~90K
ACL acll - acl5 ClassBench synthetic 5 10K
Firewall fwl - fw5 ClassBench synthetic > 10K
IP Chain ipcl, ipc2 ClassBench synthetic 5 10K
Openflow of1, of2 ClassBench-ng synthetic 9 10K

2)

Performance evaluation——Experiment results

* Rule groups

106 vl ZEvaEZEvEsEZEy

104

® 102

10 L

100 N ‘\
.'\\r

ARG
NYVOYWH.0N. 0.9 ON
FISTELETESS

[/ A Rule Group

cale

>

Fig.7. The number of rule
* Time consumption

S Naive,n=2K 7 7J1ABUT,n=2K,0=1 =1ABUT,n=2K,6=10 " 3JABUT,n=2K,6=100
5¢)Naive,n=4K [~ JABUT,n=4K,8=1 —JABUT,n=4K,6=10 [JABUT,n=4K,6=100
24.0
g
S
: K
£ 5
ot M
g X
2 0.1 0
: :
2 g = :>d: F ~— | \ N
§ =8 AN AN KA J
©0.0 EREN SEERVEN REENUED RN AN rI:L‘ N = NA=N
’ cdl sfl acll fw1l ipcl of1

Fig.8. naive regrouping vs. ABUT’ s incremental regrouping

Performance evaluation——Experiment results

* Effect of empty entry distribution

74 Bottom, acll X3 Top, acll E==—1Middle, acll [IIT] Ends, acll XX Even, acll E==: Random, acll
Bottom, fwl E=]1Top, fwl E= Middle, fwl [T Ends, fwl =73 Even, fwl [--1Random, fwl
15
» %
g 7]
=
g 10
=)
B N
5 5
8 SN
2N 5
0 s :
6=70%

Fig.9. empty distribution strategies under m=4K and 6 =50

 Performance on LPM tables (TCAM as a cache)

|[z2 coLA_RC RC == COLASC D SC £XJ ABUT]|

» 10! § i
) g

g N g4

£ 100 TN Z\ =

=~ 1071 / N\ g

; NN

Q 2\ N 2 X ,‘ - 7 -
‘5 N N 5 Fs K K /\\
: NS [ImmZNEl I IZNS | BZNEIISHANE ||

Fig.10. Update performance on LPM tables

Performance evaluation——Experiment results

e Performance on multi-field rule tables

[COLA_RC RC EH COLA_SC [IIm SC KA ABUT

) — —
E102 2 g 24
E oy £20 B
v N
£ 100 / S £16 'y
8 % % N 812
%1004 / ¢ f \ 5 8 7\
2 /N &) 4 /\;
g N / % gﬂ = N % =il N
Q0.1 Tk SAN=1IT2AN=1I} A= BAN=1 SHAN= 1S HAN=1IS!
© acll fwl ipcl of1 acll fwl ipcl of1

Fig.11. Update performance on multi-field tables

* Scalability on batch size ()

72 COLA_RC,acll [X¥ RC,acll == COLA_SC,acll 111 SC,acl1 EKXJ1ABUT,acl1
ZZ1COLA_RC,fwl E=JRC,fwl ——COLA_SC,fwl [IIDSC,fwl [X>JABUT, fwl

-~ =

" -

g 10 - = *

o 58 -

o = A

& ®

- 56

2 s

g =

= 1 : ¥ g g A

ﬂ- /1 N U 2 by N/ H

E N [N B B = ANH B H L

s N AN (R \ i\ TH A AR L Al

Q0.1 =l INThe N Nl 0 \=la qhA 1] dvalld (I
6=10 6=30 6=50 6=100 6=10 6=30 6=50 6=100

Fig.12. Update performance with 8 for m =4K and 6=80%

Performance evaluation——Experiment results

* Scalability on TCAM size ()

72 COLA_RC,acll (XY RC,acll == COLA_SC,acl1 [II11 SC,acll KXJABUT,acl1

[ZZ1COLA_RC,fwl E=JRC,fwl T COLA_SC,fwl [II0SC,fwl [ABUT.,fwl
‘g —
u102 i 2] N
: e
Qo -
£ . g
1) N g 8
5 ‘ =) AN 4
@ N > \ H
—
/] < q :
é’ \ e | 8 ! | I H
&l H 5N | —
2 H 4 1‘ E a M ></ H
Q ‘ e b4 0 - ‘/\ a/ 111
m=8K m=16K m=8K m=16K

Fig.13. Update performance with m for 8 =50 and 6=80%
* Scalability on TCAM fill-rate ()

. < 100%, inserte =50 rules

. = 100%, randomly delete =50 rules before inserting =50 rules
7 COLA_RC,acll [N RC,acll = COLA_SC,acl1 [IIT] SC,acl1 &3 ABUT,acl1
[ZZICOLA_RC,fwl E=JRC,fwl E=COLA_SC,fwl [IDSC,fwl [ABUT,fwl
10! R

— Ty

—_
[e)]

TCAM Operations
® S

L

!
|

6=60% 6=80% 6=100%

Compute Overhead (ms)

N
A
#\
N\
#\
#\
A
i\

0-

T 5=80% 6=100%

Fig.14. Update performance with o for © =50 and m=4K

Conclusion

 ABUT is the first true TCAM batch update algorithm
* Grouping rules and maintain group orders
* Dynamic programming for optimal TCAM placement

* Adaptive empty entry distribution

Thank You!

Q&A

