
Adaptive Batch Update in TCAM (ABUT) : How
Collective Optimization Beats Individual Ones

Ying Wan1, Haoyu Song2, Yang Xu3, Chuwen Zhang1, Yi Wang4,5, and Bin Liu1,5

1Tsinghua University, China, 2Futurewei Technologies, USA
3Fudan University, China 4Southern University of Science and Technology, China

5Peng Cheng Laboratory, China

Email: wany16@mails.Tsinghua.edu.cn

Outline

• Background

• Related work

• Two key algorithms of ABUT:
• Incremental rule grouping

• Optimal TCAM placement calculation

• Performance evaluation

• Conclusion

Background —— TCAM for rule tables
• The de facto industry standard for rule tables

• line-speed lookup speed

• flexible matching pattern

• The placed rules are arranged in priority order
• TCAM returns the first matched rule

• It is the highest-priority matched rule that counts

Background —— TCAM update problem
• A new rule insertion incurs the moves of existing rules

• rules must be placed by the topological order of the rule relation graph

• design algorithms to compute the update scheme with fewer rule moves

• Batch TCAM update requirements
• A high-level policy in SDN and IDN can be converted to multiple TCAM rules

• TCAM applications present a batch update pattern (e.g., TCAM as a cache)

• Conventional applications requires batch rule table updates (TE, IP source guard)

• Individual updates accumulate to form a batch for switch (HP-5406, Pica-3290)

Background — challenges of TCAM update
• Placement cost (��)

• Proportional to the number of rule moves

• A large �� indicates the long interrupt of the TCAM lookup (packet loss)

• Compute cost (��)
• The time overhead to compute the rule move scheme

• A large �� fails to sustain the update requests (throughput and latency)

• Exist works either optimize �� or �� for individual update
• Cumulative placement and compute cost

•

Related works
• Individual update algorithms

• Per-group priority: PLO(HOTI’2000), FFU(Globecom 2006)

• Per-rule priority
• Single chain: Cao(HOTI’2000), Γcao(TON’2018)
• Hybrid chain: FastRule(JSAC’2019)
• Range chain: RuleTris(ICDCS’2016), Γbh(TON’2018)

• “Semi-Batch” update algorithms:
• CoPTUA(TOC’2004), Hermes(CoNext’2017), COLA(INFOCOM’2020)

ABUT——The target and architecture

• Target:
• A batch contains n rules to be inserted

��
� <

�=1

�

��� , ��
� <

�=1

�

��
� ,

• {��
� , ��

�} and { �=1
� ��� , �=1

� ��
� } is the batch and individual update cost

• Architecture
• Rule grouping algorithm

• Incremental grouping rules
• Batch update algorithms

• placing rules according to their grouping IDs (gid)

• dynamic programming to compute the optimal placement

ABUT——incremental rule regrouping

• topological-order based rule grouping
• optimal in terms of the number of resulting groups

• regroup the rules that are possibly changed due to updates
• regroup rules in their priority order
• the change of �. ��� only affect �. ���(� is the predecessor of �)

• insertion rule �: regroup �
• deleled rule �: regroup � if and only if �. ��� == �. ��� + 1
• regrouped rule � (�. ��� is changed from � to �):

• If � > � : regroup � if and only if �. ��� <= �
• If � < �: if and only if �. ��� == � + 1

Example——incremental rule regrouping

• DAG: rule relation graph
• add the new rules (�, �0, �1), mark the new rules

• remove the rules to be deleted (�0, �1, �2), mark its specific
predecessors(�)

• LR: a link list that link the rules in their priority reverse order
• Regroup a rule after all its successors has been assigned the correct GIDs

• Only regroup the encountered marked rules
• mark its specific predecessors if its GID is changed

ABUT——optimal TCAM placement calculation
• Rules are placed in their GID orders(The legitimate placement ��):

• �, �, �, �� is the number of TCAM entries, rules, groups, rules of � − �ℎ group,
respectively

• dynamic programming to minimize placement cost (write and nullify operations)
• � � . ���, � � . ���: the GID of the rule in the entry � � and the (j-1)-th rule
• � � � : the minimum cost if � 0: � − 1 are used to place � 0: � − 1 .

• Adaptive empty entry distribution without extra cost
• The two ways in Eq.3 give the same cost

Example——optimal TCAM placement calculation

• Placement cost
• The minimized TCAM write and nullify operations

• Batch updates
• Delete �0, �1, and �2

• Insert �, �0, and �1

• any path from � 0 0 to � � � represents an optimal placement.

• Compare objects
• Single Chain (SC)[1]

• Range Chain (RC)[1]

• Batch update: COLA_SC, COLA_RC

• Metric
• Rule grouping performance
• Effect of empty entry distribution
• Performance on LPM and multi-field rule tables
• Scalability on batch size (�), TCAM capacity (�), TCAM fill-rate (�)

• Dataset
• CAIDA (��1~��10) and Stanford(��1, ��2)
• ACL(���1~���5) and FW(��1~��5)
• Openflow rules (��1, ��2)

Performance evaluation——Experiment setup

• Rule groups

• Time consumption

Performance evaluation——Experiment results

• Effect of empty entry distribution

• Performance on LPM tables (TCAM as a cache)

Performance evaluation——Experiment results

• Performance on multi-field rule tables

• Scalability on batch size (�)

Performance evaluation——Experiment results

• Scalability on TCAM size (�)

• Scalability on TCAM fill-rate (�)
• � < 100%, inserte �=50 rules
• � = 100%, randomly delete �=50 rules before inserting �=50 rules

Performance evaluation——Experiment results

Conclusion
• ABUT is the first true TCAM batch update algorithm

• Grouping rules and maintain group orders

• Dynamic programming for optimal TCAM placement

• Adaptive empty entry distribution

Thank You!

Q & A

18/20

