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Background TCAM for rule tables

* The de facto industry standard for rule tables
* line-speed lookup speed

 flexible matching pattern

* The placed rules are arranged in priority order
 TCAM returns the first matched rule

[t is the highest-priority matched rule that counts
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Fig.1. The mechanism of TCAM



Background TCAM update problem

* A new rule insertion incurs the moves of existing rules

rules must be placed by the topological order of the rule relation graph

design algorithms to compute the update scheme with fewer rule moves

 Batch TCAM update requirements

A high-level policy in SDN and IDN can be converted to multiple TCAM rules
TCAM applications present a batch update pattern (e.g., TCAM as a cache)
Conventional applications requires batch rule table updates (TE, IP source guard)

Individual updates accumulate to form a batch for switch (HP-5406, Pica-3290)
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Fig.2. The rule overlapping relationship and the rule relation (DAG)



Background — challenges of TCAM update

* Placement cost ( )

* Proportional to the number of rule moves

 Alarge indicates the long interrupt of the TCAM lookup (packet loss)

* Compute cost ( )
* The time overhead to compute the rule move scheme

 Alarge fails to sustain the update requests (throughput and latency)

* Exist works either optimize  or for individual update

* Cumulative placement and compute cost



Related works

* Individual update algorithms
* Per-group priority: PLOHOTI’2000), FFU(Globecom 2006)
* Per-rule priority
 Single chain: Cao(HOTI’2000), I'_,,(TON’2018)

* Hybrid chain: FastRule(JSAC’2019)
* Range chain: RuleTris(ICDCS’2016), I',,,(TON’2018)

* “Semi-Batch” update algorithms:
» CoPTUA(TOC’2004), Hermes(CoNext’2017), COLA(INFOCOM*2020)
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Fig. 3. Classification of TCAM update algorithms.



ABUT——The target and architecture

* Target:
e A batch contains n rules to be inserted
< : < ,
=1 =1
« { , }and{ 10— } is the batch and individual update cost

* Architecture
* Rule grouping algorithm
* Incremental grouping rules
* Batch update algorithms
 placing rules according to their grouping IDs (gid)
* dynamic programming to compute the optimal placement
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Fig.4. The architecture of TCAM



ABUT——incremental rule regrouping

* topological-order based rule grouping

* optimal in terms of the number of resulting groups

(1)

_ 0 r has no successor
A =

max{r'.gid} +1 ' € successors of r

* regroup the rules that are possibly changed due to updates

* regroup rules in their priority order

* the change of . only affect .  ( 1isthe predecessor of )
* insertion rule :regroup
* deleled rule :regroup ifandonlyif . == . +1
* regrouped rule ( . is changed from to ):
If > :regroup ifandonlyif . <=

If < :ifandonlyif . == +1



Example incremental rule regrouping

* DAG: rule relation graph
* add thenewrules( , o, 1), mark the new rules
* remove the rules to be deleted ( g, 1, »2), mark its specific
predecessors( )
* Lg: a link list that link the rules in their priority reverse order

* Regroup a rule after all its successors has been assigned the correct GIDs

* Only regroup the encountered marked rules
e mark its s Initial DAG ©
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Fig.5. An example of the fast incremental regrouping



ABUT

* Rules are placed in their GID orders(The legitimate placement  ):

optimal TCAM placement calculation

is the number of TCAM entries, rules, groups, rules of —  group,
respectively
kE—1 k—1
T .\ n =4 '?_."'I-!
ﬁ-‘L — (H i\z) * (m) — (HJ\E) * ! 1 (2)
i = n nl(m—n)!

* dynamic programming to minimize placement cost (write and nullify operations)

. C . : the GID of the rule in the entry and the (j-1)-th rule
. : the minimum costif 0: —1 areusedtoplace 0: —1.
Cle-1][7] + (T[e-1].gid # -1
Clilljlemin § o W01+ QE-Hed 70
Cli-1][7-1] + (T[z-1]).gid # R[j-1].gid)

* Adaptive empty entry distribution without extra cost
* The two ways in Eq.3 give the same cost



Example optimal TCAM placement calculation

* Placement cost
* The minimized TCAM write and nullify operations
e Batch updates
 Delete O, 1, and 2
e Insert , O,and 1
« anypathfrom O O to represents an optimal placement.
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(a) Before update (b) Rule regrouping (c) Calculation of optimal placement

Fig.6. An example of dynamic programming for optimal TCAM placement



Performance evaluation——Experiment setup

 Compare objects

Single Chain (SC)!!
Range Chain (RC)!

Batch update: COLA SC, COLA RC
Metric

Rule grouping performance

Effect of empty entry distribution
Performance on LPM and multi-field rule tables
Scalability on batch size ( ), TCAM capacity ( ), TCAM fill-rate ( )
Dataset

CAIDA ( 1~
ACL( 1~
Openflow rules (1,

2)

1~

10) and Stanford( 1,
5) and FW(

°)

TABLE I
RULE TABLES USED FOR PERFORMANCE EVALUATION
Type Name Source Feature Field # Size
LPM cdl - ¢d10 CAIDA real 1 ~1M
LPM sfl, sf2 Stanford real 1 ~90K
ACL acll - acl5 ClassBench synthetic 5 10K
Firewall fwl - fw5 ClassBench synthetic > 10K
IP Chain ipcl, ipc2 ClassBench synthetic 5 10K
Openflow of1, of2 ClassBench-ng synthetic 9 10K

2)




Performance evaluation——Experiment results

* Rule groups
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Fig.7. The number of rule
* Time consumption
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Fig.8. naive regrouping vs. ABUT’ s incremental regrouping



Performance evaluation——Experiment results

* Effect of empty entry distribution
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Fig.9. empty distribution strategies under m=4K and 6 =50

 Performance on LPM tables (TCAM as a cache)
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Fig.10. Update performance on LPM tables



Performance evaluation——Experiment results

e Performance on multi-field rule tables
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Fig.11. Update performance on multi-field tables

* Scalability on batch size ( )
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Fig.12. Update performance with 8 for m =4K and 6=80%



Performance evaluation——Experiment results

* Scalability on TCAM size ( )
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Fig.13. Update performance with m for 8 =50 and 6=80%
* Scalability on TCAM fill-rate ( )

. < 100%, inserte =50 rules

. = 100%, randomly delete =50 rules before inserting =50 rules
7 COLA_RC,acll [N RC,acll = COLA_SC,acl1 [IIT] SC,acl1 &3 ABUT,acl1
[ZZICOLA_RC,fwl E=JRC,fwl E=COLA_SC,fwl [IDSC,fwl [ ABUT,fwl
10! R

— Ty

—_
[e)]

TCAM Operations
® S

L

!
|

6=60% 6=80% 6=100%

Compute Overhead (ms)

N
A
#\
N\
#\
#\
A
i\

0-

T 5=80% 6=100%

Fig.14. Update performance with o for © =50 and m=4K



Conclusion

 ABUT is the first true TCAM batch update algorithm
* Grouping rules and maintain group orders
* Dynamic programming for optimal TCAM placement

* Adaptive empty entry distribution
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