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Background —— TCAM for rule tables
• The de facto industry standard for rule tables

• line-speed lookup speed

• flexible matching pattern

• The placed rules are arranged in priority order
• TCAM returns the first matched rule

• It is the highest-priority matched rule that counts

 



 

Background —— TCAM update problem
• A new rule insertion incurs the moves of existing rules

• rules must be placed by the topological order of the rule relation graph

• design algorithms to compute the update scheme with fewer rule moves

• Batch TCAM update requirements
• A high-level policy in SDN and IDN can be converted to multiple TCAM rules

• TCAM applications present a batch update pattern (e.g., TCAM as a cache)

• Conventional applications requires batch rule table updates (TE, IP source guard)

• Individual updates accumulate to form a batch for switch (HP-5406, Pica-3290)

 



 

Background — challenges of TCAM update
• Placement cost (��)

• Proportional to the number of rule moves 

• A large ��  indicates the long interrupt of the TCAM lookup (packet loss)

• Compute cost (��)
• The time overhead to compute the rule move scheme

• A large �� fails to sustain the update requests (throughput and latency)

• Exist works either optimize �� or �� for individual update
• Cumulative placement and compute cost

•  



 

Related works
• Individual update algorithms

• Per-group priority: PLO(HOTI’2000), FFU(Globecom 2006)

• Per-rule priority
• Single chain: Cao(HOTI’2000), Γcao(TON’2018)
• Hybrid chain: FastRule(JSAC’2019)
• Range chain: RuleTris(ICDCS’2016), Γbh(TON’2018)

• “Semi-Batch” update algorithms: 
• CoPTUA(TOC’2004), Hermes(CoNext’2017), COLA(INFOCOM’2020) 



 

ABUT——The target and architecture

• Target:
• A batch contains n rules to be inserted
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• Architecture 
• Rule grouping algorithm

• Incremental grouping rules 
• Batch update algorithms

• placing rules according to their grouping IDs (gid)

• dynamic programming to compute the optimal placement



 

ABUT——incremental rule regrouping

• topological-order based rule grouping
• optimal in terms of the number of  resulting groups

• regroup the rules that are possibly changed due to updates
• regroup rules in their priority order 
• the change of �. ��� only affect �. ���(� is the predecessor of �)

• insertion rule �: regroup �
• deleled rule �: regroup � if and only if �. ���  == �. ��� + 1
• regrouped rule � (�. ��� is changed from � to �):

• If � > � : regroup � if and only if �. ���  <=  �
• If � < �: if and only if �. ���  ==  � + 1



 

Example——incremental rule regrouping

• DAG: rule relation graph
• add the new rules (�,  �0,  �1), mark the new rules

• remove the rules to be deleted (�0,  �1,  �2), mark its specific 
predecessors(�)

• LR: a link list that link the rules in their priority reverse order
• Regroup a rule after all its successors has been assigned the correct GIDs

• Only regroup the encountered marked rules
• mark its specific predecessors if its GID is changed



 

ABUT——optimal TCAM placement calculation
• Rules are placed in their GID orders(The legitimate placement ��):

• �,  �,  �,  �� is the number of TCAM entries, rules, groups, rules of � − �ℎ group, 
respectively

• dynamic programming to minimize placement cost (write and nullify operations)
• � � . ���,  � � . ���: the GID of the rule in the entry � �  and the (j-1)-th rule
• � �  �  : the minimum cost if  � 0: � − 1  are used to place � 0: � − 1 .

• Adaptive empty entry distribution without extra cost
• The two ways in Eq.3 give the same cost



 

Example——optimal TCAM placement calculation

• Placement cost
• The minimized TCAM write and nullify operations

• Batch updates
• Delete �0,  �1,  and �2

• Insert �,  �0, and �1

• any path from � 0  0  to � �  �  represents an optimal placement.



 

• Compare objects
• Single Chain (SC)[1]

• Range Chain (RC)[1]

• Batch update: COLA_SC, COLA_RC

• Metric 
• Rule grouping performance
• Effect of empty entry distribution
• Performance on LPM and multi-field rule tables
• Scalability on batch size (�), TCAM capacity (�), TCAM fill-rate (�)

• Dataset   
• CAIDA (��1~��10) and Stanford(��1,  ��2)
• ACL(���1~���5) and FW(��1~��5) 
• Openflow rules (��1,  ��2)

Performance evaluation——Experiment setup



 

• Rule groups

• Time consumption

Performance evaluation——Experiment results



 

• Effect of empty entry distribution 

• Performance on LPM tables (TCAM as a cache)

Performance evaluation——Experiment results



 

• Performance on multi-field rule tables

• Scalability on batch size (�)

Performance evaluation——Experiment results



 

• Scalability on TCAM size (�)

• Scalability on TCAM fill-rate (�)
• � < 100%, inserte �=50 rules
• � = 100%, randomly delete �=50 rules before inserting �=50 rules

Performance evaluation——Experiment results



 

Conclusion
• ABUT is the first true TCAM batch update algorithm 

• Grouping rules and maintain group orders

• Dynamic  programming for optimal TCAM placement

• Adaptive empty entry distribution
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