
Adaptive Batch Update in TCAM: How Collective
Optimization Beats Individual Ones

Ying Wan1, Haoyu Song2, Yang Xu3, Chuwen Zhang1, Yi Wang4, 5∗, Bin Liu1, 5∗
1 Tsinghua University, China 2 Futurewei Technologies, USA 3 Fudan University, China

4 Southern University of Science and Technology, China 5 Peng Cheng Laboratory, China

wany16@mails.tsinghua.edu.cn, wy@ieee.org, lmyujie@gmail.com

Abstract—Rule update in TCAM has long been identified
as a key technical challenge due to the rule order constraint.
Existing algorithms take each rule update as an independent
task. However, emerging applications produce batch rule update
requests. Processing the updates individually causes high aggre-
gated cost which can strain the processor and/or incur excessive
TCAM lookup interrupts. This paper presents the first true
batch update algorithm, ABUT. Unlike the other alleged batch
update algorithms, ABUT collectively evaluates and optimizes the
TCAM placement for whole batches throughout. By applying the
topology grouping and maintaining the group order invariance
in TCAM, ABUT achieves substantial computing time reduction
yet still yields the best-in-class placement cost. Our evaluations
show that ABUT is ideal for low-latency and high-throughput
batch TCAM updates in modern high-performance switches.

I. INTRODUCTION

As an indispensable component in modern network

switches, Ternary Content Addressable Memory (TCAM) [1]

is used for rule tables supporting functions like packet for-

warding [2], access control [3], traffic inspection [4], and

flow filtering [5]. The capability of parallel search on ternary

encoded rules on the one hand sustains a peerless lookup

throughput, but on the other hand makes the rule update,

especially the new rule insertion, difficult. This is because

ternary rules can overlap. A lookup key dropped in the

overlapping region of some rules matches all of them. TCAM

only returns the index of the first matching rule. Therefore,

rules must be stored in TCAM in order of decreasing priority.

At runtime when any new rule needs to be added to TCAM, it

must be placed in an empty entry without violating the priority

relationship with existing ones. In the absence of such an entry,

some incumbent rule needs to be relocated to make one, which

may lead to further rule moves. During this process, TCAM

lookup is suspended.

It is crucial to make TCAM updates low cost to meet

application requirements. The cost of a TCAM update process

comprises two parts: the computing cost tc and the placement

cost tp (i.e., the number of TCAM operations required to

finish the update). The former determines the CPU resource

consumption and the latter determines the TCAM lookup

bandwidth usage. A high computing cost strains the CPU

This work is supported by National Key R&D Program of China
(2019YFB1802600), “FANet: PCL Future Greater-Bay Area Network Facil-
ities for Large-scale Experiments and Applications (No. LZC0019)”, NSFC
(62032013, 61872213, 61432009), NSFC-RGC (62061160489), and Shanghai
Pujiang Program (2020PJD005). Corresponding Author: Yi Wang, Bin Liu.

and impairs its capability to handle other device control and

management tasks. An excessive placement cost can either

cause packet drops [6] or make the system fail to sustain the

update requests [7], [8].

In reality, applications impose strict update delay and

throughput requirements [9]. Fast failure recovery leaves no

more than 10ms for a routing table update [10]; traffic

engineering grants only a 20ms budget to activate a new

policy [11], [12]; Software-Defined Networking (SDN) [13]

introduces a high policy churn rate [14]–[20]. In prospect,

the throughput of high-end switches already reaches the level

of 12.8Tbps per chip [21] and the increase is relentless, but

TCAM’s bandwidth does not scale as fast, which means the

bandwidth ratio allocated for updates shrinks [22]. Meanwhile,

the emerging Intent-Driven Networking (IDN) [23] and au-

tonomous networks will apply faster rule updates in realtime

through closed control loops without human intervention.

In consequence, we expect the TCAM update rate to keep

increasing beyond the status quo.

No wonder the TCAM update problem was and remains a

hot research topic. However, most of the algorithms proposed

in recent years are designed to handle individual rule update

with the optimization preference for either tc or tp. Even if

multiple pending updates are present, these algorithms can

only process them independently, resulting in additive tc and

tp. A few algorithms allege to support batch updates [15], [24],

but in fact they still rely on individual update techniques, and

only seek opportunities to reduce the rule moves in the final

TCAM placement, given the moving plan of the batch. While

their tp is moderately improved, their tc remains additive and

dominates the total cost.

Meanwhile, many TCAM applications indeed present a

batch or bursty update pattern [16]. First, TCAM can be used

as a cache for hot rules on switch dataplane fast path [7],

[25]. Unlike the other types of cache, a TCAM cache usually

replaces a number of rules together each time [26]–[28]. For

instance, wildcard rule update scheme CAB proposed in [27],

[28] requires installing multiple rules within a bucket for each

rule installation request to guarantee the semantic correctness

of wildcard rule caching. Previous works mainly consider the

policies for rule replacement, but ignore the cost associated

with the updates.

Second, in SDN and IDN, the TCAM rules are converted

from high-level policies [29]–[35]. A policy with d W -

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

978-1-6654-0325-2/21/$31.00 ©2021 IEEE

IE
EE

 IN
FO

C
O

M
 2

02
1

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

8-
1-

66
54

-0
32

5-
2/

21
/$

31
.0

0
©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
42

98
1.

20
21

.9
48

87
58

Authorized licensed use limited to: Tsinghua University. Downloaded on December 22,2023 at 12:47:57 UTC from IEEE Xplore. Restrictions apply.

updates

ABUT
Data Plane

Optimal TCAM
Placement

Switch OS

TCAM
API

TCAM
Chip

User
I F

Rule
Grouping

Fig. 1. The architecture of ABUT.

bit range fields may be converted into up to W d TCAM

rules [32]. A well-known example is the port range to prefix

translation [36]. It also happens when some other rule fields

cannot be aggregated. These rules need to be bundled together

and inserted into TCAM in one atomic transaction. Failing to

do so may violate high-level policy semantics and introduce

errors to network operation [37].
Third, traffic engineering [11] and fast rerouting algo-

rithms [38] often require changing multiple forwarding rules at

the same time due to network failure or traffic pattern shift. In

such realtime applications, update inconsistency and high cost

can cause extended micro-loops and black holes for traffic.
Fourth, to synchronize the rule table states among switches

and between the controller and the switch data plane, an SDN

controller needs to coordinate [18], [39], [40], schedule [41],

[42], and compress the updates [41]. Also, during an update,

which can last for hundreds of milliseconds, some commercial

switches (e.g., HP-5406zl and Pica8-3290) [43] are found

to stop receiving further updates [44]. In these scenarios,

individual updates can easily accumulate to form a batch.
Last but not the least, we found no shortage of the batch

update requirements in conventional applications, such as IP

source guard [45], Bidirectional Forwarding Detection (BFD)

for Pseudo Wire (PW) failover [46], and ACLs for the Remote

Authentication Dial In User Service (RADIUS) [47]. A single

change on network condition or configuration often induces

many rule updates which need to take effect simultaneously.
Such TCAM applications challenge the existing algorithms,

motivating us to rethink the problem from a holistic perspec-

tive. We consider a batch of updates as one single logical

update, for which the overall update performance is concerned.

An update is done only when the last rule in a batch is settled.

Both the update throughput and delay are measured in terms

of a batch. Such a perspective provides us a fresh opportunity

to improve the update performance. The resulting adaptive

batch update algorithm, ABUT, supports the aforementioned

applications and shows a better aggregated performance than

previous algorithms. That is, if a batch contains n rules to be

inserted, ABUT achieves that T c
b < Σn

i=1t
c
i and T p

b < Σn
i=1t

p
i ,

where Tb is the batch update cost induced by ABUT, and ti is

the individual rule update cost induced by previous algorithms.
As shown in Fig. 1, the high-level architecture of ABUT

comprises two core algorithm components. ABUT integrates

the TCAM management and the rule table management, and

guarantees the update consistency. ABUT can also be used for

general TCAM applications. In case the new rule’s effective-

ness is without urgency, one can collect a set of deletion and

insertion updates during a proper time window and process

them as a batch, aiming to minimize the update impact to the

system performance. Even for single-rule updates, ABUT can

TABLE I
A RULE TABLE WITH TWO MATCHING FIELDS.

Rule pri spec act Rule pri spec actf1 f2 f1 f2
A 9 111 000 a D 0 1** 110 d
B 6 *** 0** b E 2 001 *** e

C0 4 10* 0** c F0 7 11* 001 f
C1 4 10* 10* c F1 7 11* 010 f
C2 4 10* 110 c G 8 110 010 g

C0

4 5 6 7
0
1
2
3
4
5
6

C1

B

 D

F1

f1

f2

0 1 2 3

7

F0

A

E

C2

G

(a) Overlapping relationship

C0

C2

C1

B

D

AA

B

C

D

(b) DAGs

A

C0

C2

C1

B

D

P1

C1

A

B

C2

D

P2

A

B

C1

C0

C2

D

P3

C0

(c) 3 placements

Fig. 2. Rules in space, rule/policy graph, and placements in TCAM.

still be appreciated for its simplicity and high performance.

The remainder of the paper is organized as follows. Sec-

tion II provides the background. Section III discusses the

related works. Section IV and V describe the two algorithm

components of ABUT. Section VI presents the implementation

and evaluation. Finally, Section VII concludes the work.

II. BACKGROUND

A high-level policy can be converted to one or more ternary-

encoded rules suitable for TCAM. Each policy is assigned a

unique priority value, which is inherited by the converted rules.

A larger value means a higher priority. Some algorithms keep

the cognate rules together in consecutive TCAM entries, but

it is unnecessary. Later we will show that considering them as

independent rules in a batch promises a better update perfor-

mance. Table I gives a rule table example used throughout

the paper. A rule r=(pri, sp, act) is represented by three

attributes: priority, field specification, and action. In the table,

{C0, C1, C2} and {F0, F1} are originated from the same high-

level policy C and F , respectively. Specified by two fields f1
and f2, each rule is embodied as a box on a 2D plane as

shown in Fig. 2(a).

Rule Relation Graph: The rule relation graph is a Directed

Acyclic Graph (DAG), in which each vertex denotes a rule.

A directed edge ri → rj indicates that ri and rj overlap and

ri has a higher priority than rj . The topology order of the

vertices on the same path reflects the relative priorities of the

corresponding rules and determines their mandatory order in

TCAM. If two vertices are not on the same path, the order of

their corresponding rules in TCAM does not matter, regardless

of their assigned priority values. This is a crucial foundation

for many TCAM update algorithms including ours.

Fig. 2(b) shows the DAGs for the policies and rules A to D,

respectively. Fig. 2(c) shows three possible TCAM placements,

P1, P2, and P3, which obey the topology order of the rules. If

{C0, C1, C2} are bound together, only the first placement is

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Tsinghua University. Downloaded on December 22,2023 at 12:47:57 UTC from IEEE Xplore. Restrictions apply.

possible. If instead we consider them as independent rules, the

placement is more flexible, and as a consequence, the update

performance can also benefit.

Per Rule Priority: Most existing algorithms take the as-

signed priority value as a rule’s true priority. The original

rule table is placed in TCAM in the order of decreasing

priority values. A new rule r needs to be inserted above all

the lower priority rules and below all the higher priority rules

that overlap with r. If no empty entry is available, in theory, a

range of incumbent rules can be considered as candidates for

relocation. Different algorithms diverge in the criterion that

the candidates are selected and in the direction that the rules

are allowed to move. Given a search space to explore, the

recursive process aims to find a scheme with low tp, while

taking tc as a trade-off.

Such algorithms can eventually make the rules in TCAM out

of the original priority value order, although the placement

still obeys a topology order of the DAG. This may raise a

troublesome “reorder” problem [48] when the introduction of

a new rule r breaks the current topology order. For example,

assume two rules ri and rj are not on the same DAG path, and

due to the previous updates, ri is located above rj despite ri
has a lower priority value. If the new rule r happens to overlap

with both ri and rj , and it has a higher priority than ri but

a lower priority than rj , now ri and rj’s relative order must

be switched before the insertion of r. This cannot be done

by just swapping ri and rj , because of their own topology

order constraints. Instead, either ri or rj needs to be reinserted,

which is equivalent to another insertion update. The reorder

problem, while neglected by some previous algorithms [49],

[50], happens at a stark probability of up to 28.79% [24].

Per Group Priority: Some other algorithms reduce the

number of priority values by grouping rules. All the rules in a

same group share the same priority and their relative order can

be arbitrary [37], [51]. One only needs to make sure each rule

is assigned to a correct group and maintain the group order.

The reorder problem will never happen in this case. A notable

example is using TCAM for IP address Longest Prefix Match

(LPM) tables in which prefixes are grouped and prioritized

based on their length. The number of priorities is determined

by the number of prefix groups but not the rule table size. A

simple algorithm supports the rule insertion with the moving

cost bounded by the group number [52]. Although its tc is

attractive, the tp can be far from optimal.

Topology-Order Priority Grouping: The number of priority

groups can be further compressed with the help of the rule

relation DAG. As long as two rules are not on the same path,

they are possible to be grouped together. Specifically, we use

the following procedure to group the rules. All the vertices

without any successor are grouped together and assigned the

priority value ‘0’. For any other vertex, after all its direct

successors have their priority values assigned, it will be

assigned a priority value that is one plus the largest priority

value of its direct successors. All the vertices (i.e., rules) with

the same priority value are grouped together, using the priority

value as the group ID (GID). It is easy to see that the number

individual

per-group priority

batch

single chainprefix length topology order

individual

ority

batch

single chainainainogy order

per-rule priority

TCAM update algorithms

better tc

nn hybridd range chain

better tp

PLO

CoPTUA

ate

FFU Cao FastRule RuleTris
bh

Hermes
COLA

down

Fig. 3. Classification of TCAM update algorithms.

of groups is the same as the length of the longest DAG path.

When applying an insertion update based on per group

priority, the tp is bounded by the group number. For the LPM

tables, topology-order priority grouping results in much fewer

groups than prefix-length grouping. For the general multi-

dimension rule tables, the number of groups may not be small

enough to make individual rule updates impressive, but the

batch updates can amortize the T p, so the tp per rule stands

low. Needless to say that the T c, already superior even for

single rule update, is also shared by all the rules in a batch.

Update in Batch: Driven by the batch update requirements,

ABUT is the first algorithm that follows the above principle

and seeks the collective optimization opportunities. Specifi-

cally, ABUT is built in light of the following high-level ideas.

First, the holistic viewpoint of batch update allows multiple

rules to be evaluated at the same time, making it possible

to achieve a lower TCAM placement cost than the additive

cost for updating each rule individually. The first observation

is that the rule insertion order can affect the total placement

cost [41], [44]. Considering the rules together allows us to find

the best order within a batch. The second observation is that

collectively producing the final TCAM placement for a batch

can avoid redundant rule moves. For example, if a rule needs

to be moved twice due to two individual updates, now we can

place it in its final target entry in just one move.

Second, previous algorithms have little control on the empty

entry distribution. An update algorithm can benefit from the

even empty entry distribution, but actively dispersing empty

entries in TCAM is undesirable due to the extra moving cost.

While rule deletion can naturally generate empty entries, it

has no guarantee on the distribution. Because of the abundant

placement choices, the batch update algorithm is possible

to adapt to any initial placement and casually achieve even

distribution of empty entries without extra cost.

III. RELATED WORK

The existing TCAM update algorithms can be classified

based on their technical features as shown in Fig. 3. Most

algorithms are designed for individual updates. Among these

algorithms, the earlier works adopt the priority grouping

method featuring a small tc. PLO [52] groups LPM rules based

on the prefix length. FFU [51] groups general rules based on

their topology order. The worst-case tp subjects to the number

of groups for these algorithms.

To improve tp, later algorithms start to use each rule’s

priority value and its position in the rule relation DAG in

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Tsinghua University. Downloaded on December 22,2023 at 12:47:57 UTC from IEEE Xplore. Restrictions apply.

lieu of the priority grouping. A clear trade-off on selecting

the candidate rules to move distinguishes these algorithms.

Cao [52] and Γdown [48] only consider a single candidate (i.e.,

the rule’s closest successor or predecessor) in each recursive

step. The evaluated rules form a single chain. On the other

extreme, Γbh [48] and RuleTris [49] evaluate all the feasible

candidates at each step, leading to a near-optimal tp at a

high tc. FastRule [50] gives up some tp gain in exchange of

a smaller tc. Only for the new rule, are all the candidates

considered for FastRule; in each recursive step, FastRule

regresses to the single chain approach as in Γdown and Cao.

A few works tackle the batch update problem. CoPTUA [6]

focuses on maintaining table consistency and lookup through-

put during batch updates. The method actually increases the

tp. The complex table management and batch processing also

increase the update latency. Hermes [15] uses a small logical

shadow table to process batches of updates and migrates the

changes to TCAM periodically. As a system architecture, Her-

mes lacks an underlying batch update algorithm. COLA [24]

relies on the priority-based individual update algorithms to

calculate the moving scheme for each rule in a batch first and

then jointly considers the final TCAM placement. While its T p

is improved, its T c is still additive and subjects to the poor tc

of the individual updates.

Due to the scalability issue of TCAM [53], in recent years

it becomes popular to use TCAM as a cache rather than for

a complete lookup table. Most works focus on improving the

hit rate of the TCAM cache [7], [27], [54]. Less attention

is paid on the algorithm supporting efficient and consistent

batch updates. The aforementioned individual and semi-batch

update algorithms are ill-suited for TCAM cache because of

their high tc, tp, or long deployment delay.

IV. INCREMENTAL TOPOLOGY ORDER RULE GROUPING

A. Preliminary

ABUT is based on the topology order priority group-

ing, which is optimal in terms of the number of resulting

groups [37], [51]. For any r, its GID r.gid is assigned as:

r.gid =

{
0 r has no successor

max{r′.gid}+ 1 r′ ∈ successors of r
(1)

r.gid is in essence the minimum height of its corresponding

vertex in the DAG. While we can group the initial rules using

topology sorting with a time complexity of O(V+E), in which

V is the number of vertices and E is the number of edges in the

DAG, it is too expensive to run the regrouping algorithms once

for each update. In fact, rule insertions or deletions can only

affect the GIDs of their predecessors. A strawman approach is

therefore to collect and work on only their predecessor rules.

Unfortunately, this approach still involves too many rules to

warrant a good performance. Therefore, we develop a fast

incremental regrouping algorithm as the first key component

of ABUT.

Both rule insertion and deletion may change some rules’

GIDs. However, rule deletion does not change the topology

order of the remaining rules in the DAG. Other than nullifying

the corresponding TCAM entries for the deleted rules, we only

mark their direct predecessors to be cared for, and postpone

the regrouping until rule insertions are needed.

The newly inserted rules also need to get their GIDs

calculated, so these rules are also marked in the DAG, and

their GIDs are initialized to be ‘-1’. At this point, the GIDs

of all the marked rules need to be calculated. The change of

a rule’s GID can in turn cause other rules to change their

GIDs, making it important to maintain a proper order to avoid

redundant and invalid calculations.

Our incremental regrouping algorithm is based on the

following observations (assume r′ is r’s direct predecessor).

(1) The change of r’s GID can only affect the GIDs of

its predecessors. If we evaluate and update the GID in the

increasing priority value order, the GIDs of the visited rules

will not change any more and the regrouping is guaranteed

to finish in one pass. (2) In such an evaluation order, if r.gid
is changed, we only need to mark those r′ whose GIDs are

possibly affected, but not others. If the change propagates

further and more rule’s GIDs are affected, the evaluation order

guarantees to attend to them eventually. (3) According to

the above marking criterion, when r is deleted, r′ should be

marked only if r′.gid == r.gid+1. Any other value of r′.gid
means it is not directly derived from r. (4) Similarly, after

a marked rule r’s GID is calculated, if r.gid is increased

from x to y, r′ should be marked only if r′.gid ≤ y; if

r.gid is decreased from x to y, r′ should be marked only

if r′.gid ==x+1. r cannot directly affect r′ with other GID

values. (5) If a marked rule’s GID turns out unchanged after

evaluation, no further rule marking is needed.

B. Algorithm Description

Starting from the DAG and the GID assignment for the ini-

tial rule set, we sketch the incremental regrouping algorithm.

To maintain the order for GID calculation, we augment each

vertex in the DAG another pointer which is used to link all

the rules in the order of increasing priority values. To keep

track of the marked rules, we augment each vertex a flag. A

“True” flag indicates that the GID of the corresponding rule

needs to be evaluated.

At first, only the inserted rules and some direct predecessors

of the deleted rules are marked. The linked list is scanned from

the head. The GID of each marked rule encountered is eval-

uated. If its GID is changed, some of its direct predecessors

that meet the marking criterion are marked. The flag is cleared

once a marked rule is processed. The regrouping is done after

the linked list is scanned.

Algorithm 1 lists the pseudo code for the incremental

regrouping algorithm. The performance gain of the algorithm

comes from two aspects. First, it reduces the time complexity

to O(V + e) in which e is a small subset of edges in the

DAG. Second, the linked list traversal is much faster than the

recursive depth-first search in topology sorting.

Example: Fig. 4 illustrates an example of the incremental

regrouping process based on rules in Table I. Assume the

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Tsinghua University. Downloaded on December 22,2023 at 12:47:57 UTC from IEEE Xplore. Restrictions apply.

ABC0C1C2D

A B C0 C1 C2 DInitial DAG

Initial LR

Updated DAG A D E F0 F1 G

Updated LR B GF0 F1ED A

Regrouped LR B GF0 F1ED A

0 1 0 0 1 2

D

D
0 1

A

A
2

D
0

E
0

B
1

FF000000

2
F111

2
G
3

A
2

GID

-1 -1 -1 -1

B

AAAA
22222

BBB
11111

CCCCCCCC00C000

00000
CCCCCCCC1CCCC11

00000
CCCCCCCCCCCC2CCCC22

11111
DDD
00000DDD

Fig. 4. An example of the fast incremental regrouping.

Algorithm 1: Incremental Topology Order Rule Grouping

Input: rule graph G=(V, E); the linked list LR; set of
{existing, inserted, deleted} rules {Re, Ri, Rd}.

Output: GIDs of rules in Re+Ri-Rd are assigned correctly
1 for each deleted rule r in Rd do
2 remove r from LR

3 for each r’s direct predecessor r′ do
4 if r′.gid == r.gid+1 then r′.flag = true

5 for each inserted rule r in Ri do
6 add r into LR, r.flag = true, r.gid = −∞
7 for (r = LR.head(); r �= LR.end(); r = LR.next()) do
8 if r.flag == true then
9 r pre gid = r.gid

10 if r has at least one successor then
11 r.gid=max{r′.gid | r′∈direct successors of r}+1

12 else r.gid = 0
13 if r pre gid �= r.gid then
14 for each r’s direct predecessor r′ do
15 if r.gid+1 > r′.gid then r′.flag=true
16 if r pre gid+1 == r′.gid then r′.flag=true

17 r.flag = false

original table only contains rules A to D. The batch update

requests to remove rules C0 to C2, and insert new rules E
to G. The original DAG and linked list are shown in the top

portion of the figure. In the linked list we label each rule with

its GID. The updated DAG and liked list after the rule removal

and the new rule insertion are shown in the middle portion of

the figure. The initial set of marked rules are highlighted. In

addition to the new rules, rule B is marked because of the

deletion of C0.

The linked list is scanned from rule D. Rule E is the first

marked rule. Since it has no successor, its GID is set to 0. Rule

B is E’s only direct predecessor. Since B.gid == E.gid+1,

there is no need to mark B, although in this case B is already

marked due to the deletion of rule C0.

Now the scan advances to the next marked rule B. After

calculation, B’s GID is not changed, so there is no need to

examine B’s direct predecessors. This process continues until

all the linked list nodes are visited. The grouping result is

shown in the lower portion of Fig. 4.

V. OPTIMAL TCAM PLACEMENT

A. Preliminary

TCAM update is fundamentally a TCAM placement prob-

lem for the updated rule set, with the objective for low

incremental cost. Given that any topology order placement

of the rule set is legitimate [51], to reduce the search space,

ABUT only examines the subset of the placements that the

rules follow the decreasing GID order after the topology

grouping, but allows arbitrary rule orders within the same

group.

Assume n rules are placed in m TCAM entries T[0:m−1],

and the rules are distributed in k groups with the size of Ni for

the i-th group. Under such conditions, the number of legitimate

placements NL is still as large as:

NL = (
k−1∏
i=0

Ni!) ∗
(
n
m

)
= (

k−1∏
i=0

Ni!) ∗ m!

n!(m− n)!
(2)

Clearly it is infeasible to conduct brute-force search in such

a large space. ABUT manages to find the optimal TCAM

placement in this space with a time complexity of O(m ∗ n).
Before delving into the algorithm, we first explain how the

placement cost is evaluated.

Updating a TCAM involves only two types of operation:

(1) Nullify an existing rule (i.e., empty an entry), and (2)

Write a rule into an entry, which can concomitantly nullify

the original rule if the entry is not empty. To evaluate the

update performance more precisely, we count the total number

of write operations (cw) and nullify operations (cn) to achieve

a placement as the placement cost (i.e., tp = cw + cn).

Assume the original TCAM placement is L, and after update

it becomes L′. The calculation of tp needs to consider the

following five cases. (1) T[i] was empty in L but is occupied

in L′. This increases cw by 1. (2) T[i] was occupied in L but

is empty in L′. This increases cn by 1. (3) T[i] is occupied in

both L and L′. Assume in L, after regrouping, the GID of the

rule in T[i] is x, and in L′, the GID of the rule in T[i] is y.

If x �= y, we know the previous rule and the current rule are

from two different groups, so they must be different. In this

case, a write operation is required, which increases cw by 1.

(4) The condition is similar to the above case, but x == y,

which means that the previous rule and the current rule are

from the same group. Since we allow arbitrary rule orders in

the same group, we can keep the previous rule in situ from L
to L′. This case incurs no cost. (5) T[i] is empty in both L
and L′, which incurs no cost as well.

When transforming from L to L′, in order to achieve the

optimal placement cost, we should minimize the occurrence

of the first three cases and maximize that of the last two.

B. Algorithm Description

Finding the min cost: We calculate the optimal placement

cost through dynamic programming. Assume m is the total

number of TCAM entries and n is the total number of rules

to be placed (including the inserted rules but excluding the

deleted ones). We use a 2D matrix C[0:m][0:n] with m +

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Tsinghua University. Downloaded on December 22,2023 at 12:47:57 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: Optimal TCAM Placement

Input: initial placement T[0:m-1]; set of {existing, inserted,
deleted} rules {Re, Ri, Rd}; the linked list LR

Output: The operations for the Optimal TCAM placement
1 INCREMENTALTOPOLOGYORDERRULEGROUPING(LRe ,Ri,Rd)
2 R=Re+Ri-Rd, n=R.size()
3 sort the rules in R in GID decreasing order
4 C[0][0]=0 // INIT for finding the minimal placement cost
5 for i in range (1, m+1) do
6 C[i][0] = C[i-1][0] + (T[i-1].gid�=-1), A[i][0] = “↓”
7 for j in range (1, n+1) do
8 C1 = C[i-1][j] + (T[i-1].gid �= -1)
9 C2 = C[i-1][j-1] + (T[i-1].gid �= R[j-1].gid)

10 if C1 < C2 then C[i][j] = C1, A[i][j] = “↓”
11 else if C1 > C2 then C[i][j] = C2, A[i][j] = “↘”
12 else if (i-1)-(j-1) > (m-n)/m∗(j-1) then
13 C[i][j] = C1, A[i][j] = “↓”

14 else C[i][j] = C2, A[i][j] = “↘”

15 i = m, j = n, To[0:m-1] = -1 //INIT for finding the placement
while i ≥ 1 do

16 if A[i][j] == “↘” then
17 To[i-1].gid = R[j-1].gid, i = i-1, j = j-1

18 else i = i-1

19 Sw.clear(), Sn.clear(), Rw = Rins //INIT for finding operations
20 for j in range (0, m) do
21 if To[j].gid == T[j].gid then continue
22 if To[j].gid == -1 then Sn.add(j)
23 if To[j].gid �= -1 then Sw.add(j)
24 if T[j].gid ≥ 0 then Rw.add(original rule in T[j])

25 for i in range (0, Sn.size()) do
26 nullify the TCAM entry T[Sn[i]].

27 sort the rules to be written in Rw in decreasing GID order
28 sort the entries for writing in Sw in increasing address order
29 for j in range (0, Rw.size()) do
30 write the rule Rw[j] into the TCAM entry T[Sw[i]].

1 rows and n + 1 columns to keep the intermediate results.

C[i][j] holds the minimum placement cost if the first i TCAM

entries T[0:i-1] are used to place the first j rules R[0:j-1].

C[m][n] is exactly the final result we look for. In initialization,

C[0][0] is set to 0; since C[i][j] for j > i is impossible, the

value of these elements is set to +∞.

We use T[i].gid to denote the GID of rule placed in T[i]
and R[·].gid to denote the decreasing group order that must

be enforced. Specifically, T[i].gid=−1 if T[i] is empty, and

T[i].gid=−2 if the old rule in T[i] is one of the deleted rules.

With this notation, we have two ways to place the first j rules

in the first i entries. (1) Assume we have found the optimal

way to place the first j rules in the first i−1 entries, then we

just need to make the i-th entry empty. (2) Assume we have

found the optimal way to place the first j−1 rules in the first

i−1 entries, then we just need to place the j-th rule in the i-th
entry. The optimal way is the one that results in a lower cost,

which can be described by the following recursive step:

C[i][j]=min

{
C[i-1][j] + (T[i-1].gid �= -1)

C[i-1][j-1] + (T[i-1].gid �= R[j-1].gid)
(3)

In the first way, the i-th entry must be emptied. So if it is

currently occupied (i.e., T[i-1].gid �=-1) by r, no matter r is

one of the deleted rules or it should be relocated, a nullify

operation is needed, increasing the total cost by 1. In the

second way, if the j-th rule’s GID, R[j-1].gid, is different

from T[i-1].gid (as a result of three possibilities: (1) T[i-1] is

empty, (2) It currently holds one of the deleted rules, or (3)

It holds a rule with different GID), a write operation to T[i]
is needed, increasing the total cost by 1. Otherwise, if T[i-
1].gid==R[j-1].gid, based on the earlier discussion on Case

4, we can keep the old rule in T[i] in situ to avoid increasing

the cost.

Example: We use our previous example to illustrate the

dynamic programming process. The original rule graph and

the TCAM placement are shown in Fig. 5(a). The updated

rule graph (now containing 7 rules) and the regrouping result

are shown in Fig. 5(b). The new placement needs to place 7

rules in 9 entries. In Fig. 5(c), T[·].gid reflects the TCAM

layout we start with. Since the rules C0, C1, and C2 are

deleted, the GIDs of their corresponding entries T[2], T[6],

and T[8] are set to -2. The GIDs of the empty entries T[1],

T[3], and T[4] are set to -1. The remaining entries T[0],

T[5], and T[7] are occupied by the original rules A, B and

D. Their GIDs are set to the updated GID of the rule in it

accordingly. The dynamic programming process starts from

C[0][0] and progresses towards C[9][7]. In this example, the

optimal placement cost is 6, implying the minimum number

of write and nullify operations is 6.

Finding the placement: Only knowing the optimal cost is

not enough. We need to obtain the actual placement and the

required operations. We augment the dynamic programming

process with a little extra data that helps us keep track of the

progression paths. When calculating C[i][j], we also record

from which way the value is derived. In case of a tie, either

way can be taken—later we will discuss how we can take

advantage of this fact to achieve automatic and arbitrary

empty entry distribution. The arrows in Fig. 5(c) indicates the

progression directions. Following the arrows, any path from

C[0][0] to C[m][n] represents an optimal placement.

At any grid (i, j) on such a path, whenever the value

increases by 1, either a nullify or a write operation on T[i-
1] is needed. These entries are collected in two sets, Sn and

Sw, respectively. For such an entry, if C[i][j] is derived from

the first way (i.e., by a vertical arrow), then T[i-1] should be

empty, so T[i-1] belongs to Sn. Otherwise, if C[i][j] is derived

from the second way (i.e., by an oblique arrow), then T[i-1]

should be occupied, so T[i-1] belongs to Sw. In this case,

if T[i-1] was occupied by r and r is not one of the deleted

rules, we add r in the set of new rules because it needs to be

reinserted somewhere else.

The update plan is therefore as simple as (1) Nullifying

the entries in Sn, and (2) In any decreasing GID order,

writing the set of new rules into the entries in Sw. In some

applications, the TCAM operations are interleaved with the

lookup operation. In order to maintain the lookup consistency,

in the second step, we simply place the relocated rules first

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Tsinghua University. Downloaded on December 22,2023 at 12:47:57 UTC from IEEE Xplore. Restrictions apply.

B

A

D

0

1

2

3

4

5

6

7

8

T[i]iiiii TTTT[[[[iiii[[[[]]]]iiii

77 D

66

55 B

44

33

22

11

0 AA
[]

88

C1

C2

C0

B

D

C1

C0

PlacementDAG

C2

A

(a) Before update

GIDDAG

G

A

F0

E

F1

B

D

3

2

2

0

2

1

0

(b) Rule regrouping

0
1

2
2
2
3
4
5
6

1
1
2
2
2
3
4
5
6

2
2
2
2
3
4
5
6

3
3

3
3
4

5
6

4

4

5
6

5
4
5
5
6

6

5
5
6

7
5
6

44
4

22

1

44
4

iiiiiT[i-1].gid j

R[j-1].gid

2
222
222
333
444
55
666

0
111

22

111

d
00

jj 0 1 2 3 4 5 6 7iidd jiiidd iii jj

0
1
2
3
4
5
6
7
8
9

-1
-2
-1
-1

-2

-2
0

2

1

3 2 2 1 02 022222 22222 22222 11111 00000 00000

22222
----111111111
----2222222222
---1111111
-----1111111
1111111
----22222
000000000
----22222

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

(c) Calculation of optimal placement

Entry
process

write

write

write

write

nullified

write

write

write

write

nullified

write

0

1

2

3

4

5

6

7

8

77

66

55

44

33

22

11

0

88

-1

222222

--1111111

-2

-1

-1

1

-2

0

-2 -11

00

00

111

222

-111

222

222

3

Rule
process

Initial
placement

Optimal
placement

T[i].gid To[i].gidiiiii
22222

TTT[[[[[[iiii[[[[]]]].]]iiii ididgidgg

3

TTTooTT [[[[[[iiii[[[[]]]].]]iiii ididgidggddd T[i] Rule in T[i]
i

TTTT[[[[iiii[[[[[]]]]iiii R lR lRuleR l iiiin TTTT[[[[iiii[[[[[]]]]]iiii

deleted

relocated

overwritten

overwritten

(d) Finding the placement operations

0

1

2

3

4

5

6

7

8

77

66

55

44

33

22

11

0

88

TCAM
operations

Final
placement

T[i]iiii TTTT[[[[[iiii[[[[[]]]]]iiii

T[0]T[0[[]0[]

T[1]

Sw

T[2]

T[4]

Rw

T[6]

]]
ww

G

]]] A

]]] F0

] E

]]]

]] EE

F1

T[8]

SnSSnSn

T[8[[]8T[8[]8

Nullify

Write

G

A

F0

F1

B

E

D

(e) After update

Fig. 5. An example of dynamic programming for optimal TCAM placement.

before placing the other new rules.

Example: There are 9 equal-cost optimal placements possi-

ble for our example. Fig. 5(c) highlights one of the progression

path, and Fig. 5(d) illustrates the corresponding placement

and required operations. This specific placement requires 5

write operations—one of them for relocating A—and 1 nullify

operation. The operations and the final TCAM placement are

shown in Fig. 5(e).

Adaptive empty entry distribution: The distribution of the

empty entries in TCAM can affect the placement cost. Almost

all algorithms benefit from the empty entries closing to the rule

insertion locations. Since one cannot predict the locations for

future insertions, the best strategy is to evenly distribute the

empty entries throughout the TCAM space. However, existing

algorithms have no control on the empty entry distribution.

They either passively take advantage of the empty entries left

by rule deletions, or manually move the empty entries to some

specific locations at extra cost.

In contrast, ABUT supports arbitrary empty entry distri-

bution as a concomitant process without extra cost. During

the dynamic programming process, whenever the two ways

in Eq. 3 give the same cost, we are free to choose either

one. The first way (i.e., keeping the TCAM entry empty) is

equivalent to pushing the empty entry down, and the second

way (i.e., keeping the TCAM entry occupied) is equivalent to

pushing the empty entry up. If adhering to the first (second)

way, eventually all the empty entries will concentrate at the

lower (upper) part of the TCAM. This effect enables us to

design an adaptive algorithm for even empty entry distribution,

keeping TCAM in an ideal state for future updates.

Since we have m−n empty entries in total, if we would like

to evenly distribute these empty entries, we would expect to

have one empty entry every m/(m−n) entries. Or inversely,

during the dynamic programming, for the first i entries, we

should try to maintain the expected empty entry density

(m−n)/m. That is, whenever a way selection opportunity

emerges at grid (i, j), if (i−j)/(i−1)>(m−n)/m, the first

way is chosen to reduce the empty entry density by pushing

the empty entry down; otherwise the second way is chosen.

Summary: Algorithm 2 lists the pseudo code of the opti-

mal TCAM placement algorithm. Composed of the topology

grouping and the optimal placement, ABUT has a overall time

complexity of O(m ∗ n) regardless of the batch size. In our

example, the batch update contains 3 deletions and 4 inser-

tions, but the placement cost is only 6, which means ABUT

needs less than one TCAM operation per rule update, beating

the best case for all individual TCAM update algorithms.

In the actual implementation, we manage to only store

the Boolean type variables in the 2D matrix to indicate

the progression direction, while maintaining an array for the

necessary cost values. For a 4K-entry TCAM, this optimization

reduces the required memory for computation from 80MB

to 16MB. This may not be a big deal for a server, but is

worthwhile when the algorithm runs on the embedded or on-

board management CPU in switches.

VI. IMPLEMENTATION AND EVALUATION

A. Experiment Setup

We choose Single Chain (SC) and Range Chain (RC) as the

representatives for the individual TCAM update algorithms.

For fair and sound comparisons, our implementations of SC

and RC fix some flaws in the existing algorithm embodiments.

Specifically, we detect and solve the reorder problem which

was ignored by some previous algorithms, and allow rules to

move bidirectionally so empty entries in TCAM can be fully

utilized. We also compare ABUT with COLA [24], the semi-

batch update algorithm. COLA uses either SC or RC as the

underlying individual update algorithms. The two variations

are labeled as COLA SC and COLA RC, respectively. All

the algorithms are implemented in C++.

We use 26 rule tables summarized in Table II for algorithm

evaluation. Due to the privacy and security concerns, we

can only access the real LPM tables from CAIDA [55] and

the Stanford backbone network [56]. The multi-field rule

tables are acquired, as a convention, from the synthesis tools

ClassBench [57] and ClassBench-ng [58]. ClassBench-ng can

generate rules with more than 5 fields.

Unless otherwise mentioned, tc is measured by the real

computing time per updated rule and tp is measured by

the number of TCAM operations per updated rule. To test

the algorithms’ scalability and their sensitivity to different

parameters, we vary the rule table type, batch size, TCAM

capacity, and TCAM fill rate, respectively. Note that the

modern switches predominantly use only on-chip TCAM due

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Tsinghua University. Downloaded on December 22,2023 at 12:47:57 UTC from IEEE Xplore. Restrictions apply.

TABLE II
RULE TABLES USED FOR PERFORMANCE EVALUATION

Type Name Source Feature Field # Size
LPM cd1 - cd10 CAIDA real 1 ∼1M

LPM sf1, sf2 Stanford real 1 ∼90K

ACL acl1 - acl5 ClassBench synthetic 5 10K

Firewall fw1 - fw5 ClassBench synthetic 5 10K

IP Chain ipc1, ipc2 ClassBench synthetic 5 10K

Openflow of1, of2 ClassBench-ng synthetic 9 10K

to ultra-high throughput and I/O limitation, and the TCAM

capacity needs to be partitioned to support multiple logical

tables [59]–[61], so a single TCAM table contains at most a

few thousand entries. However, in the TCAM scalability test,

we still extend the TCAM capacity to 16K.

B. ABUT Examination

We first examine several key factors that contribute to

ABUT’s performance.

Rule Grouping. Fig. 6 shows the rule table size versus the

number of topology order rule groups. The actual sizes of

ipc, acl, and fw are larger than that of their corresponding

synthesized tables because of the conversion from range to

prefix on the port fields [62]. The number of groups ranges

from a few to a few dozens. The small number paves the

foundation for the two algorithm components of ABUT.

Fig. 6. The number of rules vs. the number of groups.

Regrouping Performance. Fig. 7 shows the running time

of ABUT’s incremental regrouping algorithm versus that of

the naive approach that runs topology sorting on each batch,

under the combinations of different batch size θ and rule table

size m. The incremental regrouping is 20 to 40 times faster.

While the running time has a linear relationship with the table

size, it is not sensitive to the batch size. The time per rule will

decrease quickly as the batch size increases.

Fig. 7. Naive regrouping vs. ABUT’s incremental regrouping.

Effect of Empty Entry Distribution. We examine the

consequence of six different empty entry distribution strategies

by modifying the ABUT implementation. The empty entries

can be pushed to the bottom, the top, the middle, or both ends

Fig. 8. Empty entry distribution strategies under m=4K and θ=50.

of the TCAM space. It is also easy to make the distribution

random or even (as described in Section V). Under different

TCAM fill rate δ, we measure the tp for randomly inserting

100 new rules. As shown in Fig. 8, the experiments confirm

that different strategies have a significant impact on tp and the

even distribution of empty entries is the best, so it is used as

the default strategy in ABUT.

C. Algorithm Comparisons

Performance on LPM tables. We first compare the update

performance on the single-field LPM table cd1. Fig. 9 shows

the tc and tp for ABUT and the other algorithms. In this

case, TCAM is typically used as a cache (i.e., the fill rate

δ is 100%). The rule caching and replacement decisions are

calculated by CacheFlow [7], using an hour-long real packet

trace [63]. The cache refreshing period is set to 1 minute.

Under such a configuration, the batch size is 304, 485, and

522 on average when m is 2K, 4K, and 8K, respectively. The

average results on 60 refresh cycles are shown in Fig. 9. ABUT

is the only one algorithm that requires less than 2 operations

per rule update, meanwhile with the least tc.

Fig. 9. Update performance on LPM tables.

Performance on multi-field rule tables. We compare the

update performance on several typical multi-field rule tables.

Fig. 10 shows the results when m, θ, and δ are set to

4K, 50 and 80%, respectively. The rules in each batch are

chosen randomly and the result is the average of 40 runs.

Again, ABUT’s tc is up to 600∼1200x and 2∼4x shorter than

RC/COLA RC and SC/COLA SC, respectively. ABUT’s tp

is also the best.

Scalability on batch size θ. Fig. 11 shows the algorithm

performance on two typical rule tables, acl1 and fw1, by

varying the batch size. The rules in each batch are chosen

randomly and the result is the average of 40 runs. ABUT’s tc

becomes the best when θ is greater than 10, while ABUT’s

tp remains the best for all the batch sizes. As θ increases, all

the batch update algorithms including COLA show a better tp.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Tsinghua University. Downloaded on December 22,2023 at 12:47:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 10. Update performance on multi-field rule tables.

According to the finding in [26], [64], the typical batch size

θ is often greater than 100, for which ABUT is much more

preferable.

Fig. 11. Update performance with θ for acl1 and fw1, m=4K, δ=80%.

Scalability on TCAM capacity m. Fig. 12 shows the perfor-

mance of the algorithms under different TCAM capacity. The

tc of ABUT is 40∼100x shorter than that of RC/COLA RC

and 1.1∼4x shorter than that of SC/COLA SC. While the tc

advantage of ABUT over SC/COLA SC decreases with the

increase of m, ABUT’s tp is stable and consistently beats

other algorithms with a large margin.

Fig. 12. Update performance with m for acl1 and fw1, θ=50, δ=80%.

Scalability on TCAM fill rate δ. Fig. 13 shows the per-

formance of the algorithms under different TCAM fill rates.

When δ is 100%, we randomly delete 50 rules first and then

randomly insert 50 rules, to emulate the cache operations.

All the algorithms are not very sensitive to the TCAM fill

rate, but generally a higher fill rate does require higher tc

and tp for updates. The tc of RC and the tp of SC show

a clear increasing trend when δ is less than 100% and we

only insert new rules to TCAM, because the occurrence of the

reorder problem becomes more frequent as δ increases. ABUT

consistently outperforms the other algorithms for any TCAM

fill rate. ABUT’s performance is also more stable because it

is immune to the reorder problem.

Fig. 13. Update performance with δ for acl1 and fw1, θ=50, m=4K.

Computing time vs. TCAM operations. The absolute time is

more revealing in weighing the real impact of tc and tp to the

system. The update latency for a batch is the sum of the two,

and the update throughput is determined by the larger of the

two. A TCAM operation can finish in less than a microsecond

due to its high clock frequency, while the per-rule computing

time for the existing algorithms is in the order of milliseconds.

The huge discrepancy suggests that tc is the dominant factor

impacting the update performance, and therefore deserves

more optimization efforts. In this regard, ABUT is the most

balanced algorithm so far with the exceptional tc and top-rank

tp. Fig. 14 shows the per-batch update latency comparisons.

In the figure, the lower part of each bar filled with the star

pattern represents the portion of latency due to tp, and the rest

represents the portion due to tc, using the parameters suggested

by Xilinx [65] (i.e., TCAM frequency is 170MHz and one

operation takes 33 clock cycles). ABUT shows stable and

small update latency regardless of the batch size and supports

much higher update throughput than others for moderate to

large batch sizes. The simplicity of ABUT will become more

important in high performance switches, because while terabit

per second switch chips are commonplace, “the management

CPU on most switches is relatively wimpy” [66].

Fig. 14. Update latency per batch with θ for acl1 and fw1, m=4K.

VII. CONCLUSION

ABUT is the first true batch update algorithm tailored

to the requirements for bursty and batch TCAM updates

in high-performance switches. Through extensive evaluations,

we showcase the collective optimization on batches, with

predictable lower cost and higher scalability, can indeed beat

the algorithms relying on individual updates. Thanks to its

simplicity, ABUT is practical and ready to be integrated into

the TCAM-based rule table management system supporting

existing and emerging applications.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Tsinghua University. Downloaded on December 22,2023 at 12:47:57 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] B Salisbury. TCAMs and OpenFlow-what every SDN practitioner must
know. See http://tinyurl.com/kjy99uw, 2012.

[2] Kirill Kogan, Sergey I Nikolenko, Ori Rottenstreich, William Culhane,
and Patrick Eugster. Exploiting order independence for scalable and
expressive packet classification. TON, 2015.

[3] Haesung Hwang, Shingo Ata, Koji Yamamoto, Kazunari Inoue, and
Masayuki Murata. A new TCAM architecture for managing ACL in
routers. IEICE Transactions, 2010.

[4] S Jayashree and N Shivashankarappa. Deep packet inspection using
ternary content addressable memory. In I4C, 2014.

[5] Zhijun Wang et al. A TCAM-based solution for integrated traffic
anomaly detection and policy filtering. Computer communications, 2009.

[6] Zhijun Wang, Hao Che, et al. CoPTUA: Consistent policy table update
algorithm for TCAM without locking. TOC, 2004.

[7] Naga Katta et al. Cacheflow: Dependency-aware rule-caching for
software-defined networks. In SOSR, 2016.

[8] Masoud Moshref, Minlan Yu, Abhishek Sharma, and Ramesh Govindan.
vCRIB: virtualized rule management in the cloud. In HotCloud, 2012.

[9] Jeongkeun Lee, Yoshio Turner, Myungjin Lee, Lucian Popa, Sujata
Banerjee, Joon-Myung Kang, and Puneet Sharma. Application-driven
bandwidth guarantees in datacenters. In SIGCOMM, 2014.

[10] B Niven-Jenkins, D Brungard, M Betts, N Sprecher, and S Ueno.
Requirements of an MPLS Transport Profile. RFC5654, 2009.

[11] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan,
Nelson Huang, Amin Vahdat, et al. Hedera: Dynamic flow scheduling
for data center networks. In NSDI, 2010.

[12] Abhinav Pathak, Ming Zhang, Y Charlie Hu, Ratul Mahajan, et al.
Latency inflation with MPLS-based traffic engineering. In IMC, 2011.

[13] Jean Tourrilhes, Puneet Sharma, Sujata Banerjee, and Justin Pettit.
The evolution of SDN and OpenFlow: a standards perspective. IEEE
Computer Society, 2014.

[14] Geng Li, Yichen Qian, Chenxingyu Zhao, Y Richard Yang, and Tong
Yang. DDP: Distributed Network Updates in SDN. In ICDCS, 2018.

[15] Huan Chen and Theophilus Benson. Hermes: Providing tight control
over high-performance SDN switches. In CoNEXT, 2017.

[16] Geng Li et al. Update Algebra: Toward Continuous, Non-Blocking
Composition of Network Updates in SDN. In INFOCOM, 2019.

[17] Sushant Jain et al. B4: Experience with a globally-deployed software
defined WAN. SIGCOMM CCR, 2013.

[18] Jiaqi Zheng, Hong Xu, Guihai Chen, and Haipeng Dai. Minimizing
transient congestion during update in datacenters. In ICNP, 2015.

[19] Wei Zhang, Guyue Liu, Ali Mohammadkhan, Jinho Hwang, KK Ra-
makrishnan, and Timothy Wood. SDNFV:Flexible and dynamic software
defined control of application-and flow-aware data plane. In IMC, 2016.

[20] Klaus-Tycho Foerster, Stefan Schmid, et al. Survey of consistent
software-defined network updates. IEEE Commun. Surv. Tutor., 2018.

[21] Broadcom. At a Glance: Tomahawk 3 is the first 12.8 Tb/s chip to
achieve mass production. https://www.broadcom.com/blog.

[22] Mehdi Malboubi, Liyuan Wang, Chen-Nee Chuah, and Puneet Sharma.
Intelligent SDN based traffic (de) aggregation and measurement
paradigm (iSTAMP). In INFOCOM, 2014.

[23] Victor Heorhiadi, Sanjay Chandrasekaran, et al. Intent-driven composi-
tion of resource-management SDN applications. In CoNEXT, 2018.

[24] Baolan Zhao, Rui Li, Jin Zhao, and Tilman Wolf. Efficient and
Consistent TCAM Updates. In INFOCOM, 2020.

[25] Kirill Kogan et al. Sax-pac (scalable and expressive packet classifica-
tion). In SIGCOMM, 2014.

[26] Zixuan Ding et al. Update Cost-Aware Cache Replacement for Wildcard
Rules in Software-Defined Networking. In ISCC, 2018.

[27] Bo Yan, Yang Xu, Hongya Xing, et al. CAB: A reactive wildcard rule
caching system for software-defined networks. In HotSDN, 2014.

[28] Bo Yan, Yang Xu, and H Jonathan Chao. Adaptive wildcard rule cache
management for software-defined networks. TON, 2018.

[29] Pavel Chuprikov, Kirill Kogan, and Sergey Nikolenko. How to imple-
ment complex policies on network infrastructure. In SOSR, 2018.

[30] Ori Rottenstreich et al. On finding an optimal TCAM encoding scheme
for packet classification. In INFOCOM, 2013.

[31] Anat Bremler-Barr and Danny Hendler. Space-efficient TCAM-based
classification using gray coding. Transactions on Computers, 2010.

[33] Alex X Liu, Chad R Meiners, and Eric Torng. TCAM Razor:A
systematic approach towards minimizing packet classifiers in TCAMs.
TON, 2009.

[32] Ori Rottenstreich and Isaac Keslassy. Worst-case TCAM rule expansion.
In INFOCOM, 2010.

[34] Kirill Kogan, Sergey Nikolenko, William Culhane, Patrick Eugster, and
Eddie Ruan. Towards efficient implementation of packet classifiers in
SDN/OpenFlow. In HotSDN, 2013.

[35] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang,
Aditya Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma,
and Ying Zhang. PGA: Using graphs to express and automatically
reconcile network policies. SIGCOMM CCR, 2015.

[36] Huan Liu. Efficient mapping of range classifier into ternary-CAM. In
Proceedings 10th Symposium on High Performance Interconnects, 2002.

[37] Andreas Voellmy, Junchang Wang, Y Richard Yang, Bryan Ford, and
Paul Hudak. Maple: Simplifying SDN programming using algorithmic
policies. In SIGCOMM, 2013.

[38] Mike Shand and Stewart Bryant. IP fast reroute framework. Technical
report, RFC 5714, January, 2010.

[39] Aggelos Lazaris et al. Tango: Simplifying SDN control with automatic
switch property inference, abstraction, and optimization. In CoNEXT,
2014.

[40] Jeffrey C Mogul, Alvin AuYoung, Sujata Banerjee, Lucian Popa,
Jeongkeun Lee, Jayaram Mudigonda, Puneet Sharma, and Yoshio Turner.
Corybantic: towards the modular composition of SDN control programs.
In HotNets, 2013.

[41] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth Kandula,
Ratul Mahajan, Ming Zhang, Jennifer Rexford, and Roger Wattenhofer.
Dynamic scheduling of network updates. In SIGCOMM, 2014.

[42] Hongli Xu, Zhuolong Yu, Xiang Yang Li, Liusheng Huang, Chen Qian,
and Taeho Jung. Joint Route Selection and Update Scheduling for Low-
Latency Update in SDNs. TON, 2017.

[43] Maciej Kuźniar, Peter Perešı́ni, Dejan Kostić, and Marco Canini.
Methodology, measurement and analysis of flow table update charac-
teristics in hardware openflow switches. Computer Networks, 2018.

[44] Maciej Kuźniar, Peter Perešı́ni, and Dejan Kostić. What you need to
know about SDN flow tables. In PAM, 2015.

[45] F Baker. Cisco IP Version 4 Source Guard. Work in Progress, 2007.

[46] T Nadeau et al. Bidirectional Forwarding Detection for the Pseudowire
Virtual Circuit Connectivity Verification. RFC5885, 2010.

[47] Carl Rigney et al. Remote authentication dial in user service, 2000.

[48] Peng He et al. Partial order theory for fast TCAM updates. TON, 2018.

[49] Xitao Wen, Bo Yang, Yan Chen, Li Erran Li, Kai Bu, Peng Zheng, Yang
Yang, and Chengchen Hu. RuleTris: Minimizing rule update latency for
TCAM-based SDN switches. In ICDCS, 2016.

[50] Kun Qiu et al. FastRule: Efficient Flow Entry Updates for TCAM-Based
OpenFlow Switches. JSAC, 2019.

[51] Haoyu Song and Jonathan Turner. Nxg05-2: Fast filter updates for packet
classification using TCAM. In IEEE Globecom, 2006.

[52] Devavrat Shah and Pankaj Gupta. Fast incremental updates on Ternary-
CAMs for routing lookups and packet classification. In HOTI, 2000.

[53] Kirill Kogan et al. Fib efficiency in distributed platforms. In ICNP.
IEEE, 2016.

[54] Wan Ying, Haoyu Song, Yang Xu, et al. T-cache: Dependency-free
Ternary Rule Cache for Policy-based Forwarding. In INFOCOM, 2020.

[55] CAIDA. Data collection,curation and sharing. https://www.caida.org.

[56] Stanford backbone router configuration. http://tinyurl.com/o8glh5n.

[57] David E Taylor and Jonathan S Turner. Classbench: A packet classifi-
cation benchmark. TON, 2007.

[58] Jiřı́ Matoušek et al. Classbench-ng: Recasting classbench after a decade
of network evolution. In ANCS, 2017.

[59] Nexus 9000 TCAM Carving. http://goo.gl/wXC0KY.

[60] NOVISWITCH. http://noviŒow.com/products/noviswitch/.

[61] Understanding and Configuring Switching Database Manager on Cata-
lyst 3750 Series Switches. http://goo.gl/nLziyq.

[62] Alexander Kesselman, Kirill Kogan, et al. Space and speed tradeoffs in
TCAM hierarchical packet classification. JCSS, 2013.

[63] The CAIDA UCSD Anonymized Internet Traces[20180315]. www.
caida.org/data/passive/passive dataset.xml. Accessed in Mar, 2018.

[64] Xitao Wen et al. Compiling minimum incremental update for modular
SDN languages. In HotSDN, 2014.

[65] Xilinx. TCAM Search IP for SDNet. https://www.xilinx.com/support/
documentation/ip documentation/tcam/pg190-tcam.pdf.

[66] Andrew R Curtis, Jeffrey C Mogul, Jean Tourrilhes, Praveen Yalagan-
dula, Puneet Sharma, and Sujata Banerjee. DevoFlow: Scaling flow
management for high-performance networks. In SIGCOMM, 2011.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Tsinghua University. Downloaded on December 22,2023 at 12:47:57 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T23:36:11-0400
	Preflight Ticket Signature

