
FastUp: Fast TCAM Update for SDN Switches
in Datacenter Networks

Ying Wan1, Haoyu Song2, Hao Che3, Yang Xu4, Yi Wang5, Chuwen Zhang1, Zhijun
Wang3, Tian Pan8, Hao Li7, Hong Jiang3, Chengchen Hu6,7, Bin Liu1

1Tsinghua University, China, 2Futurewei Technologies, USA
3University of Texas at Arlington, USA, 4Fudan University, China

5Southern University of Science and Technology, China,
6Xilinx, Singapore, 7Xi’an Jiaotong University, China

8Beijing University of Posts and Telecommunications, China
Email: wany16@mails.Tsinghua.edu.cn

Outline

• Background and related work

• The principle of FastUp:

• Analysis of the optimal TCAM update

• Performance evaluation

• Conclusion

Background —— TCAM for rule tables
• The de facto industry standard for rule tables

• line-speed lookup speed: compare a key with all rules in parallel

• flexible matching pattern: LPM, EM, and RM

• The placed rules are arranged in priority order
• TCAM always returns the first matched rule (i.e., with the lowest physical address)

• It is the highest-priority matched rule that counts

• E.g., packet p matches r2, r4, and r5, but the lowest one r2 is returned

• A new rule insertion incurs the moves of existing rules
• R6 overlaps with r0 and r2. r6 has a higher priority than r2 and has a lower priority than r0

• Up to 10 ms on P4 switch to insert a new rule when the TCAM capacity is set to 4K entries

Background —— TCAM update problem
• Rule relation graph

• each node represents a rule and each edge represents the overlapping relationship

• each rule must be placed above all its descendants and below all its ascendants.
• R’s predecessor: the ascendant of r that is the closest to r

• R’s successor: the descendant of r that is the closest to r

• Rule moving strategy
• A rule can be inserted between its predecessor and its successor

• A rule r can be moved downward directly to its successor

• A rule r can be moved downward to any entry between it and its successor.

SSA——sequential-stack based algorithm

RCA—Rule chain based algorithm for reorder resolution

• Definition of reorder problem
• SSA assumes that a new rule ru can always find one or more candidate locations.
• If succ(ru).addr<pred(ru).addr, the reorder problem happens.

• E.g., r3r6r0

• Relocate the out-of-order rules until succ(ru).addr > pred(ru).addr
• Reorder resolution

• Why not choose SSA:
• Time complexity and infinite loop

• RCA:
• Move one of out-of-order two rules and keep the other one in place

• R0r0.succr0.succ.succ
• Guarantee the reorder resolution

• in one round, if the reorder is not resolved, the gap between the rules is reduced.

BBA—branch-and-bound algorithm for optimal TCAM update

• Definition of optimal TCAM update (OTU)
• The solution with the theoretically smallest rule moves

• Why exist algorithms fail to find the optimal solution
• The rules are moved in the fixed and same direction

• The difficulty in achieving OTU
• any topological order of the DAG is a feasible TCAM placement and vice versa.

• N, m, N_TT, and N_L are the number of rules, TCAM entries, topological orders and feasible TCAM layouts

• just finding the number of all topological orders N_TT has been proven to be NP-hard.
• Why need to find the OTU

• The degree of optimality, j, for a Design Under Test (DUT) is defined as
• can be used to guide further algorithm optimizations.

• How to find the OTU
• BBA processes each entry from top to bottom
• BBA tries to place each available rule in the current entry, or leave it empty.
• BBA avoids searching the space when the cumulative update cost exceeds the found OTU

• Experiment setup
• Compare objects: RuleTris, T_bh, T_down
• Testbed: a programmable OpenFlow switch——ONetSwitch
• Dataset：Access Control List (ACL) and Firewall (FW), generated by ClassBench [59].

• Experimental results：
• Metric: Compute time, interrupt time, reorder efficiency, and optimality degree

Performance evaluation

[1]�CacheFlow:�Dependency-Aware�Rule-Caching�for�SDN,�SOSR�2016,�best�paper

Conclusion
• FastUp optimizes both the compute time and interrupt time

• FastUp solves the reorder problem efficiently

• FastUp is close to the optimal TCAM update

Thank You!

Q & A

10/20

