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Background —— TCAM for rule tables
• The de facto industry standard for rule tables

• line-speed lookup speed: compare a key with all rules in parallel

• flexible matching pattern: LPM, EM, and RM

• The placed rules are arranged in priority order
• TCAM always returns the first matched rule (i.e., with the lowest physical address)

• It is the highest-priority matched rule that counts

• E.g., packet p matches r2, r4, and r5, but the lowest one r2 is returned

• A new rule insertion incurs the moves of existing rules
• R6 overlaps with r0 and r2. r6 has a higher priority than r2 and has a lower priority than r0

• Up to 10 ms on P4 switch to insert a new rule when the TCAM capacity is set to 4K entries

 



 

Background —— TCAM update problem
• Rule relation graph

• each node represents a rule and each edge represents the overlapping relationship

• each rule must be placed above all its descendants and below all its ascendants.
• R’s predecessor: the ascendant of r that is the closest to r

• R’s successor: the descendant of r that is the closest to r

• Rule moving strategy
• A rule can be inserted between its predecessor and its successor

• A rule r can be moved downward directly to its successor

• A rule r can be moved downward to any entry between it and its successor.

 



 

SSA——sequential-stack based algorithm



 

RCA—Rule chain based algorithm for reorder resolution

• Definition of reorder problem
• SSA assumes that a new rule ru can always find one or more candidate locations. 
• If succ(ru).addr<pred(ru).addr, the reorder problem happens.

• E.g., r3r6r0

• Relocate the out-of-order rules until succ(ru).addr > pred(ru).addr
• Reorder resolution

• Why not choose SSA:
• Time complexity and infinite loop

• RCA:
• Move one of out-of-order two rules and keep the other one in place

• R0r0.succr0.succ.succ
• Guarantee the reorder resolution

• in one round, if the reorder is not resolved, the gap between the rules is reduced.



 

BBA—branch-and-bound algorithm for optimal TCAM update

• Definition of optimal TCAM update (OTU)
• The solution with the theoretically smallest rule moves

• Why exist algorithms fail to find the optimal solution
• The rules are moved in the fixed and same direction

• The difficulty in achieving OTU
• any topological order of the DAG is a feasible TCAM placement and vice versa.

• N, m, N_TT, and N_L are the number of rules, TCAM entries, topological orders and feasible TCAM layouts

• just finding the number of all topological orders N_TT has been proven to be NP-hard.
• Why need to find the OTU

• The degree of optimality, j, for a Design Under Test (DUT) is defined as
•  can be used to guide further algorithm optimizations.

• How to find the OTU
• BBA processes each entry from top to bottom
• BBA tries to place each available rule in the current entry, or leave it empty.
• BBA avoids searching the space when the cumulative update cost exceeds the found OTU



 

• Experiment setup
• Compare objects: RuleTris, T_bh, T_down
• Testbed: a programmable OpenFlow switch——ONetSwitch
• Dataset：Access Control List (ACL) and Firewall (FW), generated by ClassBench [59]. 

• Experimental results：
• Metric: Compute time, interrupt time, reorder efficiency, and optimality degree

Performance evaluation

[1]�CacheFlow:�Dependency-Aware�Rule-Caching�for�SDN,�SOSR�2016,�best�paper



 

Conclusion
• FastUp optimizes both the compute time and interrupt time

• FastUp solves the reorder problem efficiently

• FastUp is close to the optimal TCAM update
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