FastUp: Fast TCAM Update for SDN Switches
in Datacenter Networks

Ying Wan!, Haoyu Song?, Hao Che?, Yang Xu4, Yi Wang>, Chuwen Zhang!, Zhijun
Wang?3, Tian Pan3, Hao Li’, Hong Jiang?, Chengchen Hu%’, Bin Liu!

'Tsinghua University, China, Futurewei Technologies, USA
SUniversity of Texas at Arlington, USA, “Fudan University, China
*Southern University of Science and Technology, China,
0Xilinx, Singapore, “Xi’an Jiaotong University, China
’Beijing University of Posts and Telecommunications, China

Email: wanyl6(@mails.Tsinghua.edu.cn
ﬁ' '“‘_g'ﬁ-\"
g ﬂ‘(*\‘ﬁ{g ’1 g }

%, nnﬁlbmghui UHl‘v’EI‘blh

Outline

Background and related work

The principle of FastUp:

Analysis of the optimal TCAM update
Performance evaluation

Conclusion

Background TCAM for rule tables

* The de facto industry standard for rule tables
* line-speed lookup speed: compare a key with all rules in parallel

* flexible matching pattern: LPM, EM, and RM

* The placed rules are arranged in priority order

 TCAM always returns the first matched rule (i.e., with the lowest physical address)
* It is the highest-priority matched rule that counts

* E.g., packet p matches r2, r4, and r5, but the lowest one 12 is returned

* A new rule insertion incurs the moves of existing rules
* R6 overlaps with 10 and r2. r6 has a higher priority than r2 and has a lower priority than r0

 Up to 10 ms on P4 switch to insert a new rule when the TCAM capacity is set to 4K entries

Rule|Pri|—-Mateh 1, on E2 Packet (0111, 1011) TCAM SRAM
Fl Fl &P " adr Il T Addr Action
I'y O | 001* | 0F*= | Fwd 0 & 3 I's - 0 _ 0
T, 7 [11=*]| 00** | Fwd 1 .\x_f 1's - 1 | 11%* | 00** 1 [Fwd1
r; | 6 |011%|***= [Fwd2| & 1 [0IF | 7= i Matched 2 [Fwd 2H=>
5 | 5 [11°7 | 117+ | Fwa3| & Fe (O 1oth) 3 s Priogied | imdex 3 [Fwd3
rs | 2 [or=*| 17 [Fwad| Se 4 [> encod 4 -
- < r . 5 [077= [101~ 1+ 5 |Fwd5
1.5 1 o%*= | 101* | Fwd 5 2 11 - n : : .
>F1 : : : '
& FTF T & & m-1 m-1

(a) Flow table. (b) Rule overlapping. {c) Implementation of the flow table in TCAM and SEAM.

Background TCAM update problem

* Rule relation graph
* each node represents a rule and each edge represents the overlapping relationship

* each rule must be placed above all its descendants and below all its ascendants.
* R’s predecessor: the ascendant of r that is the closest to r

* R’s successor: the descendant of r that 1s the closest to r
* Rule moving strategy
* A rule can be inserted between its predecessor and its successor
e A rule r can be moved downward directly to its successor

* A rule r can be moved downward to any entry between it and its successor.

- overlapping region Packet ({}1 11, 101 1) TCAM SRAM

- Addr Fl 2 Addr Action
A 7 o o o] 0 ©

B 1 | 11%* | 00** 1 |Fwdl
y 011= PEET . Matched 2 | Fwd 2 - @

Priority: A>B 3 11%* 11%% Priority index | 3 |Fwd3
4 | 017® | 17*= |i>lencoder] | 4 |Fwd4 @
Predecessor Successor 5 0*_** 10_1* T ? Fw'.d > @
i - ©

SSA sequential-stack based algorithm

* Definition of moving cost

* (]1]: the minimum rule moves to relocate the rule in the i-th TCAM entry T[i]
* Succ(1).addr: the address of the entry of the successor of the rule i T[1]

Cli = el +1

JE(i, succfx) addr]
* D[i] records the destination entry to relocate the rule currently placed in T[i]

* (Calculation of C[:]/D[:] is typical dynamic programming (DP) process.
* Optimization opportunity

T[#]| Rule C|D [t Sequential stack & Found ele
« Ifj>1andC[j] > CJi], T[j] will never be the best-c | 0
* Dynamic identify and remove the useless entries 1 % 1|6} i
* Only Find the best candidate among the entries potentially | 2 | £ 2|3 E n é
_ 3 [[@ 1(6]1 Push G
* Sequential stack S 4 |[@N 2[5t @
* Time complexity: O(m”2)->O0(m*Igh) 5 @‘ 1|6 E — | | 6| |6
The elements of S is in strict decreasing order. 6 O Jmll+! State Operste the sequenal stack
If T[1] 1s placed in S[p], then C[i] =p. (a) DAG. (b) DPA. (
The length of S will never exceed the diameter of rule graph h.) 5

* Memory footprint: O(m)-=2>0(h)
If T[1] 1s placed mn S[p], then D[1]=S[p-1].

The best candidate of the update rule must stay in S after calculation.

T 10 (useless)

RCA—Rule chain based algorithm for reorder resolution

* Definition of reorder problem
* SSA assumes that a new rule ru can always find one or more candidate locations.

* If succ(ru).addr<pred(ru).addr, the reorder problem happens.
 E.g., 13216210 T Rule

* Relocate the out-of-order rules until succ(ru).addr > pred(ru).addr 0o [y |

e Reorder resolution 1 |f %

3

* Why not choose SSA: s @& |

e Time complexity and infinite loop 4 k@\ ::-:

« RCA: 5 |09

* Move one of out-of-order two rules and keep the other one in place 6 -
RO->10.succ—=>r0.succ.succ (¢) RCA

e Quarantee the reorder resolution

in one round, if the reorder is not resolved, the gap between the rules is reduced.

T[#]| Rule |C|D T#]| Rule (C|D

0 |dg [2[3}~ |0 0 |nulllee
Lo (321 [[@, [1]o] i
2 |@®2]3) 1 |2 [@ 21 4
3 @y [1]efs |3 e [1]0/
s\, 205 [0@ 23]}
s @ [ife] [W@ [53]4] 8
6 0mue [6 [@) |[2]3F

(a) DPA. (b) DPA.

BBA—branch-and-bound algorithm for optimal TCAM update

Definition of optimal TCAM update (OTU) TR [CD] FETRE] %O Ceento

e The solution with the theoretically smallest rule moves ? %’ ? %‘: :]

Why exist algorithms fail to find the optimal solutior | 5+g—| 51 Fid 5 -

 The rules are moved in the fixed and same direction : @ ;F:HES : @ n %’E "
DPA. ich OTU, id) BBA.

The difficulty in achieving OTU WD o

* any topological order of the DAG is a feasible TCAM placement and vice versa.
* N, m, N TT, and N_L are the number of rules, TCAM entries, topological orders and feasible TCAM layouts

m)!

Np = Nos () = N+ n!(m —n)!

* just finding the number of all topological orders N_TT has been proven to be NP-hard.

Why need to find the OTU N
e The degree of optimality, j, for a Design Under Test (DUT) is defined as ApuT = OTu % 100%

-

Nput

e can be used to guide further algorithm optimizations.

How to find the OTU
* BBA processes each entry from top to bottom
* BBA tries to place each available rule in the current entry, or leave it empty.
* BBA avoids searching the space when the cumulative update cost exceeds the found OTU

Performance evaluation

* Experiment setup
* Compare objects: RuleTris, T bh, T down
e Testbed: a programmable OpenFlow switch ONetSwitch
* Dataset - Access Control List (ACL) and Firewall (FW), generated by ClassBench [59].
b
* Experimental results .
* Metric: Compute time, interrupt time, reorder efficiency, and optimality degree
lm;m FastUp RuleTris =3 r B2 FastUp RuleTris ™ S k #l] d t | A\lerugu “m {nm} n,-[aximal tlme {an}
§; Eg 100 §; a(®) paates FastUp Dbk Vdown | FastUp Uon Idown
3 1 y VY| 70 v v 34 340 062 | 0.65 | 2.3 2 | 1.8 | 66
€ ol B Y E; i %10 oM A 74 740 0.64 [078 [316 24 3.6 10.8
E VbR e £ | WV T4 | 1140 | 065 | 085 | 423 | 24 | 42 | 108
oY Ve V| Y EE v 154 1540 070 | 0.86 | 4.57 3 ig | 114
0.0l BHALRY 15 47 By 0.0 L BYEIRY 3 8.6 1860 072 | 095 | 478 3.6 6 8
2 357 91113151718 3 6 912161922242633
Flowtable Size (K) Flowtable Size (K)
(a) ACL (b) FW
Interrupt time (ms)
Sa(k) | #Updates | #Reorder |- M:R““ii"“"' [verage (Ame(ms) Case Probability FasiUp BBA AFastUp
34 | 30] | S S 3 .0 Avg | Max | Avg | Max | Avg | Max
74 740 5 5 5 19.72 21.96 Normal 97.23% 1.29 4.2 1.24 3.0 9% | T1%
LELIN L N A : pn 1l =D Reorder | 277% 520 | 126 | 230 | 3.0 | 44% | 3%
%6 1860 8 8 16 3134 3547 Mixed 100% 1.40 | 126 | 1.27 30 | 90% | 23%

[1] CacheFlow: Dependency-Aware Rule-Caching for SDN, SOSR 2016, best paper

Conclusion

* FastUp optimizes both the compute time and interrupt time
* FastUp solves the reorder problem efficiently

* FastUp is close to the optimal TCAM update

Thank You!

Q&A

