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Background TCAM for rule tables

* The de facto industry standard for rule tables
* line-speed lookup speed: compare a key with all rules in parallel

* flexible matching pattern: LPM, EM, and RM

* The placed rules are arranged in priority order

 TCAM always returns the first matched rule (i.e., with the lowest physical address)
* It is the highest-priority matched rule that counts

* E.g., packet p matches r2, r4, and r5, but the lowest one 12 is returned

* A new rule insertion incurs the moves of existing rules
* R6 overlaps with 10 and r2. r6 has a higher priority than r2 and has a lower priority than r0

 Up to 10 ms on P4 switch to insert a new rule when the TCAM capacity is set to 4K entries
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(a) Flow table. (b) Rule overlapping. {c) Implementation of the flow table in TCAM and SEAM.



Background TCAM update problem

* Rule relation graph
* each node represents a rule and each edge represents the overlapping relationship

* each rule must be placed above all its descendants and below all its ascendants.
* R’s predecessor: the ascendant of r that is the closest to r

* R’s successor: the descendant of r that 1s the closest to r
* Rule moving strategy
* A rule can be inserted between its predecessor and its successor
e A rule r can be moved downward directly to its successor

* A rule r can be moved downward to any entry between it and its successor.
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SSA sequential-stack based algorithm

* Definition of moving cost

* (]1]: the minimum rule moves to relocate the rule in the i-th TCAM entry T[i]
* Succ(1).addr: the address of the entry of the successor of the rule i T[1]

Cli = el +1

JE(i, succfx) addr]
* D[i] records the destination entry to relocate the rule currently placed in T[i]

* (Calculation of C[:]/D[:] is typical dynamic programming (DP) process.
* Optimization opportunity
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* Memory footprint: O(m)-=2>0(h)
If T[1] 1s placed mn S[p], then D[1]=S[p-1].

The best candidate of the update rule must stay in S after calculation.

T 10 (useless)



RCA—Rule chain based algorithm for reorder resolution

* Definition of reorder problem
* SSA assumes that a new rule ru can always find one or more candidate locations.

* If succ(ru).addr<pred(ru).addr, the reorder problem happens.
 E.g., 13216210 T Rule

* Relocate the out-of-order rules until succ(ru).addr > pred(ru).addr 0o [y |

e Reorder resolution 1 |f %

3

*  Why not choose SSA: s @& |

e Time complexity and infinite loop 4 k@\ ::-:

« RCA: 5 |09

* Move one of out-of-order two rules and keep the other one in place 6 -
RO->10.succ—=>r0.succ.succ (¢) RCA

e Quarantee the reorder resolution

in one round, if the reorder is not resolved, the gap between the rules is reduced.
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(a) DPA. (b) DPA.



BBA—branch-and-bound algorithm for optimal TCAM update

Definition of optimal TCAM update (OTU) TR [CD]  FETRE] %O Ceento

e The solution with the theoretically smallest rule moves ? %’ ? %‘: :]

Why exist algorithms fail to find the optimal solutior | 5+g—| 51 Fid 5 -

 The rules are moved in the fixed and same direction : @ ;F:HES : @ n %’E "
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The difficulty in achieving OTU WD o

* any topological order of the DAG is a feasible TCAM placement and vice versa.
* N, m, N TT, and N_L are the number of rules, TCAM entries, topological orders and feasible TCAM layouts

m)!

Np = Nos () = N+ n!(m —n)!

* just finding the number of all topological orders N_TT has been proven to be NP-hard.

Why need to find the OTU N
e The degree of optimality, j, for a Design Under Test (DUT) is defined as ApuT = OTu % 100%

-

Nput

e can be used to guide further algorithm optimizations.

How to find the OTU
*  BBA processes each entry from top to bottom
* BBA tries to place each available rule in the current entry, or leave it empty.
* BBA avoids searching the space when the cumulative update cost exceeds the found OTU



Performance evaluation

* Experiment setup
* Compare objects: RuleTris, T bh, T down
e Testbed: a programmable OpenFlow switch ONetSwitch
* Dataset - Access Control List (ACL) and Firewall (FW), generated by ClassBench [59].
b
* Experimental results .
* Metric: Compute time, interrupt time, reorder efficiency, and optimality degree
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[1] CacheFlow: Dependency-Aware Rule-Caching for SDN, SOSR 2016, best paper




Conclusion

* FastUp optimizes both the compute time and interrupt time
* FastUp solves the reorder problem efficiently

* FastUp is close to the optimal TCAM update
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