
FastUp: Compute a Better TCAM Update Scheme
in Less Time for SDN Switches

Ying Wan∗, Haoyu Song†, Hao Che‡, Yang Xu§, Yi Wang††, Chuwen Zhang∗, Zhijun Wang‡,
Tian Pan∗∗, Hao Li¶, Hong Jiang‡, Chengchen Hu¶‖, Zhikang Chen∗ Bin Liu∗

∗ Tsinghua University, China † Futurewei Technologies, USA ‡ University of Texas at Arlington, USA
§ Fudan University, China †† Southern University of Science and Technology, China ‖ Xilinx, Singapore
¶ Xi’an Jiaotong University, China ∗∗ Beijing University of Posts and Telecommunications, China

Abstract—While widely used for flow tables in SDN switches,
TCAM faces challenges for rule updates. Both the computation
time and interrupt time need to be short. We propose FastUp,
a new TCAM update algorithm, which improves the previous
dynamic programming-based algorithms. Evaluations show that
FastUp shortens the computation time by 40∼100× and the
interrupt time by 1.2∼2.5×. In addition, we are the first to
prove the NP-hardness of the optimal TCAM update problem,
and provide a practical method to evaluate an algorithm’s degree
of optimality. Experiments show that FastUp’s optimality reaches
90%.

I. INTRODUCTION

Software-Defined Networking (SDN) uses flow tables to
enforce flexible policies [1]. While using TCAM for flow
tables is great for lookup speed and rule flexibility, it suffers
from high update cost. Since the rules in TCAM need to be
arranged in order of priority, inserting a new rule to TCAM
may require relocating existing rules. Unfortunately, lookups
and updates in TCAM usually share the same interface, forcing
the lookup process to pause while TCAM is being updated.
Therefore, it is important to optimize the TCAM update
process by shortening the TCAM interrupt time. Meanwhile,
to achieve the low update delay required by many applications,
we also need to keep the update computation time short.

Most existing works focus on reducing the required number
of rule moves per new rule insertion (i.e., interrupt time
optimization). RuleTris [2] and Pot2 [3] achieve the best-in-
class interrupt time performance. However, their average com-
putation time reaches hundreds of milliseconds for a 4K-entry
TCAM, falling short of application requirements [4]. Although
the follow-up works Pot1 [3] and FastRule [4] shorten the
computation time of Pot2 and RuleTris, respectively, the gains
are at the cost of prolonged interrupt time.

In this paper, we propose FastUp, a new TCAM update
algorithm, which shortens the interrupt time and the com-
putation time simultaneously. Instead of using the Dynamic
Programming Algorithm (DPA) adopted by RuleTris and Pot2,

This work is supported by NSFC (61432009, 68172213, 61702049,
61872420), ”FANet: PCL Future Greater-Bay Area Network Facilities for
Large-scale Experiments and Applications (No. LZC0019)”, Guangdong Key
Research and Development Program (No.2019B121204009), and Guangdong
Basic and Applied Basic Research Foundation (2019B1515120031). Corre-
sponding Author: Bin Liu (lmyujie@gmail.com).

FastUp uses a Sequential Stack-based Algorithm (SSA), which
reduces both the time complexity and the space complexity.

To the best of our knowledge, we are the first to prove
that the problem of Optimal TCAM Update (OTU) (i.e.,
computing the minimum number of rule moves for an update)
is NP-hard. Alternatively, we develop a Branch-and-Bound
Algorithm (BBA) to evaluate the degree of optimality of a
practical optimizer.

II. ALGORITHM DESIGN

A. Problem Statement

Rules in a flow table may overlap, so a packet may match
multiple rules. Among these rules, the one with the highest
priority is taken. Since TCAM only returns the first match,
the overlapping rules must be placed in TCAM in decreasing
priority order. For two overlapping rules, the one with a higher
(lower) priority is called the parent (child) of the one with a
lower (higher) priority. If we represent each rule as a node and
add a directed edge from each parent to each of its children,
the TCAM update problem can be formulated as placing a new
node in topological order in a Directed Acyclic Graph (DAG).
Fig. 1(a) shows such an example, where r6 is the update rule.

B. Principle of DPA

A new rule ru can be placed in any TCAM entry that is
below ru’s youngest parent (i.e., the parent with the highest
address) and above ru’s oldest child (i.e., the child with the
lowest address). These entries are all candidates. However,
placing ru in an occupied candidate entry causes a chain effect.
The original rule has to be kicked out and moved downward to
another entry, which can lead to other rule moves recursively
until a rule is finally settled in an empty entry. Therefore,
the basic strategy is to evaluate the moving cost C[·] (i.e., the
number of rule moves) for inserting ru in each candidate entry.
The best moving scheme is the one with the smallest moving
cost.

For the i-th TCAM entry T[i], C[i] is equal to the smallest
moving cost among all its candidates plus 1, as formulated in
Equation 1, where oldchd(i).addr indicates the entry address
of the oldest child of the rule in T[i].

C[i] = min
j∈(i, oldchd(i).addr]

{C[j]}+ 1 (1)

Rule

0

1

2

4

5

3

6

r6

r5

r4

r3

r2

r1

r0

T[#]

(a) TCAM.

1

2

2

1

1

0

C

6

3

5

6

6

null

D

(b) DPA.

PushPush

6

Push

6

Push

5

6

5

4

T[6] T[5] T[4]

Found element Popped element Pushed element

Push

6

5

4

3 Pop

6

3

2

Push

6

3

2

1

T[3]

Pop

T[2] T[1]

Sequential stack

6

1

Clear

Initial
state

Final
state

(c) FastUp.

Fig. 1. Comparison between two cost-based approaches to insert a new rule.

Meanwhile, D[·] is used to track moving sequence. D[i] = j′

records the best-candidate T[j′] that contributes to the smallest
C[i], which means T[j′] is the target entry for the original
rule in T[i]. After the moving cost computation, the moving
sequence can be inferred by accessing D[·] recursively.

The cost calculation can be tackled by DPA starting upwards
from the bottom entry until the moving cost of all candidates of
ru is calculated, as shown in Fig. 1(b). DPA needs to process
O(m) entries, and for each entry, finding its best-candidate
needs O(m) comparisons. Therefore, the time complexity of
DPA is O(m2). Due to the introduction of C[·] and D[·], DPA’s
space complexity is O(m).

C. Principle of FastUp

FastUp’s approach is more efficient. Fig. 1(c) shows how
FastUp inserts r6 to TCAM with the help of an array-based
sequential stack S. S[0] indicates the stack bottom. In the
beginning, S is empty. For the empty TCAM entry (e.g., T[6]),
FastUp directly pushes its address into S. For the next non-
empty entry (e.g., T[5]), FastUp finds the first candidate of
the rule in the entry in S. Then, FastUp pops all the elements
above the found element (e.g., S[0]) and pushes the current
entry address (e.g., “5”) into S. After processing each entry
upwards from bottom entry (e.g., T[6]) in this way until all
candidate entries of ru are processed (e.g., T[1]), FastUp finds
the first candidate of ru in S (e.g., S[1] is found for r6). The
moving sequence to insert r6 is exactly recorded in S (e.g.,
S[0:1] for inserting r6). That is, r6→T[S[1]]→T[S[0]].

The result of FastUp is identical to that of DPA. However,
S is in strict descending order and has at most h elements,
where h is the number of unique priorities. A binary search
on it takes O(log h) time. Meanwhile, the element popping
is done by simply resetting the size of S, which is an O(1)
operation. Overall, FastUp’s time complexity is O(m log h)
and its space complexity is O(h).

D. NP-hardness of OTU

The solution given by FastUp and DPA only allows moving
rules downward. If rules can move bidirectionally, a better
solution is possible. We have proved that the OTU problem is
NP-hard. For a special case, the OTU problem can be formu-
lated as follows: When inserting a new rule to TCAM, among
all topological sequences of the rule set including the new
rule, find the one with the minimum number of rules that have
changed their positions. Finding such a topological sequence
is NP-hard, which can be deduced from a proved NP-hard

2 3 5 7 9 11 13 15 17 18
Flowtable Size (K)

0.0

0.1
1.0
10.
100

Ti
m

e
(m

s)

FastUp RuleTris POT2

(a) ACL

3 6 9 12 16 19 22 24 26 33
Flowtable Size (K)

0.0
0.1
1.0
10.
100

Ti
m

e
(m

s)

FastUp RuleTris POT2

(b) FW

Fig. 2. Compute time comparison on different Flow tables.

TABLE I
INTERRUPT TIME COMPARISON ON ACL FLOW TABLES

Size(k) Average time (ms) Maximal time (ms)
FastUp Pot2,RuleTris Pot1 FastUp Pot2,RuleTris Pot1

3.4 0.72 0.86 3.16 2.4 3.6 10.8
7.4 0.62 0.65 2.31 1.2 1.8 6.6

11.4 0.64 0.78 4.57 3 4.2 10.8
15.4 0.70 0.95 4.78 2.4 6 18
18.6 0.65 0.85 4.23 2.4 4.8 11.4

problem, Colored Token Swapping on Undirected Complete
Graph. To evaluate the degree of optimality of a practical
optimizer, we develop a Branch-and-Bound Algorithm (BBA)
which can efficiently acquire OTU for up to 1,000 rules.

III. PERFORMANCE EVALUATION

A. Experimental Setup

We compare FastUp with RuleTris and Pot2, because they
achieve the shortest up-to-date interrupt time. We also include
Pot1 because it represents the works that shorten the com-
putation time by relaxing the interrupt time. They are imple-
mented with C++ and tested by extending the firmware on
ONetSwitch [5]. Two types of flow tables, Access Control List
(ACL) and Firewall (FW), are generated by ClassBench [6].

B. Experimental Results

Fig. 2 (a) and (b) show the computation time per rule
insertion for different table sizes. FastUp is two orders of
magnitude better than RuleTris and Pot2. Table I shows the
results about interrupt time on ACL. FastUp again shows much
better performance than the others. Compared with the result
of BBA, FastUp’s interrupt time performance is within 90%
of the optimality.

REFERENCES

[1] Nick McKeown et al. Openflow: Enabling innovation in campus net-
works. ACM SIGCOMM CCR, 38(2):69–74, 2008.

[2] Xitao Wen et al. RuleTris: Minimizing rule update latency for TCAM-
based SDN switches. In ICDCS, pages 179–188. IEEE, 2016.

[3] Peng He et al. Partial order theory for fast TCAM updates. IEEE/ACM
Transactions on Networking, 26(1):217–230, 2018.

[4] Kun Qiu et al. Fast lookup is not enough: Towards efficient and scalable
flow entry updates for TCAM-based OpenFlow switches. In ICDCS,
pages 918–928. IEEE, 2018.

[5] Chengchen Hu et al. Design of all programable innovation platform for
software defined networking. In Presented as part of ONS, 2014.

[6] David E Taylor and Jonathan S Turner. Classbench: A packet classifica-
tion benchmark. IEEE/ACM TON, 15(3):499–511, 2007.

