ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/371174201

FlowBench: A Flexible Flow Table Benchmark for Comprehensive Algorithm
Evaluation

Conference Paper - May 2023

CITATIONS READS
0 37

5 authors, including:

Haoyu Song & BinlLiu
Sl Futurewei Technologies Beijing Technology and Business University
64 PUBLICATIONS 2,532 CITATIONS 346 PUBLICATIONS 6,510 CITATIONS
SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

poect Dynamic Network Telemetry and Analytics View project

Project Low Latency Network View project

All content following this page was uploaded by Haoyu Song on 01 June 2023.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/371174201_FlowBench_A_Flexible_Flow_Table_Benchmark_for_Comprehensive_Algorithm_Evaluation?enrichId=rgreq-0a013c2691cc9f46cd09277cfec74e15-XXX&enrichSource=Y292ZXJQYWdlOzM3MTE3NDIwMTtBUzoxMTQzMTI4MTE2MzUyODM5OUAxNjg1NTgwMjY2NTc5&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/371174201_FlowBench_A_Flexible_Flow_Table_Benchmark_for_Comprehensive_Algorithm_Evaluation?enrichId=rgreq-0a013c2691cc9f46cd09277cfec74e15-XXX&enrichSource=Y292ZXJQYWdlOzM3MTE3NDIwMTtBUzoxMTQzMTI4MTE2MzUyODM5OUAxNjg1NTgwMjY2NTc5&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Dynamic-Network-Telemetry-and-Analytics?enrichId=rgreq-0a013c2691cc9f46cd09277cfec74e15-XXX&enrichSource=Y292ZXJQYWdlOzM3MTE3NDIwMTtBUzoxMTQzMTI4MTE2MzUyODM5OUAxNjg1NTgwMjY2NTc5&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Low-Latency-Network?enrichId=rgreq-0a013c2691cc9f46cd09277cfec74e15-XXX&enrichSource=Y292ZXJQYWdlOzM3MTE3NDIwMTtBUzoxMTQzMTI4MTE2MzUyODM5OUAxNjg1NTgwMjY2NTc5&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-0a013c2691cc9f46cd09277cfec74e15-XXX&enrichSource=Y292ZXJQYWdlOzM3MTE3NDIwMTtBUzoxMTQzMTI4MTE2MzUyODM5OUAxNjg1NTgwMjY2NTc5&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haoyu-Song?enrichId=rgreq-0a013c2691cc9f46cd09277cfec74e15-XXX&enrichSource=Y292ZXJQYWdlOzM3MTE3NDIwMTtBUzoxMTQzMTI4MTE2MzUyODM5OUAxNjg1NTgwMjY2NTc5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haoyu-Song?enrichId=rgreq-0a013c2691cc9f46cd09277cfec74e15-XXX&enrichSource=Y292ZXJQYWdlOzM3MTE3NDIwMTtBUzoxMTQzMTI4MTE2MzUyODM5OUAxNjg1NTgwMjY2NTc5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haoyu-Song?enrichId=rgreq-0a013c2691cc9f46cd09277cfec74e15-XXX&enrichSource=Y292ZXJQYWdlOzM3MTE3NDIwMTtBUzoxMTQzMTI4MTE2MzUyODM5OUAxNjg1NTgwMjY2NTc5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bin-Liu-18?enrichId=rgreq-0a013c2691cc9f46cd09277cfec74e15-XXX&enrichSource=Y292ZXJQYWdlOzM3MTE3NDIwMTtBUzoxMTQzMTI4MTE2MzUyODM5OUAxNjg1NTgwMjY2NTc5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bin-Liu-18?enrichId=rgreq-0a013c2691cc9f46cd09277cfec74e15-XXX&enrichSource=Y292ZXJQYWdlOzM3MTE3NDIwMTtBUzoxMTQzMTI4MTE2MzUyODM5OUAxNjg1NTgwMjY2NTc5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Beijing-Technology-and-Business-University?enrichId=rgreq-0a013c2691cc9f46cd09277cfec74e15-XXX&enrichSource=Y292ZXJQYWdlOzM3MTE3NDIwMTtBUzoxMTQzMTI4MTE2MzUyODM5OUAxNjg1NTgwMjY2NTc5&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bin-Liu-18?enrichId=rgreq-0a013c2691cc9f46cd09277cfec74e15-XXX&enrichSource=Y292ZXJQYWdlOzM3MTE3NDIwMTtBUzoxMTQzMTI4MTE2MzUyODM5OUAxNjg1NTgwMjY2NTc5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haoyu-Song?enrichId=rgreq-0a013c2691cc9f46cd09277cfec74e15-XXX&enrichSource=Y292ZXJQYWdlOzM3MTE3NDIwMTtBUzoxMTQzMTI4MTE2MzUyODM5OUAxNjg1NTgwMjY2NTc5&el=1_x_10&_esc=publicationCoverPdf

FlowBench: A Flexible Flow Table Benchmark for
Comprehensive Algorithm Evaluation

Zhikang Chen*, Ying Wan*, Ting Zhang*, Haoyu Song’, Bin Liu*
*Tsinghua University, China Futurewei Technologies, USA

Abstract—Flow table is a fundamental and critical component
in network data plane. Numerous algorithms and architectures
have been devised for efficient flow table construction, lookup,
and update. The diversity of flow tables and the difficulty to
acquire real data sets make it challenging to give a fair and
confident evaluation to a design. In the past, researchers rely on
ClassBench and its improvements to synthesize flow tables, which
become inadequate for today’s networks. In this paper, we present
a new flow table benchmark tool, FlowBench. Based on a novel
design methodology, FlowBench can generate large-scale flow
tables with arbitrary combination of matching types and fields
in a short time, and yet keep accurate characteristics to reveal
the real performance of the algorithms under evaluation. The
open-source tool facilitates researchers to evaluate both existing
and future algorithms with unprecedented flexibility.

I. INTRODUCTION

Flow table [1] is a fundamental and critical component
in network data plane. Conventional routers and switches all
have forwarding tables and Access Control List (ACL) as
the core of the packet processing engine. In recent years,
Software-Defined Networking (SDN) [2] abstracts the data
plane as a flow table match-action pipeline. According to
table size, matching type, system constraint, and performance
requirement, different types of memory are engaged (e.g.,
SRAM, DRAM, and TCAM [3]) and different algorithms
are developed to address the potential performance bottleneck
on table storage [4]-[9], lookup [10]-[16], and update [17]-
[23]. While the increasing network scale keeps boosting the
flow table sizes, SDN and the emerging autonomous networks
significantly diversify the flow table types. For example, Open-
Flow 1.0 [24] supports just 12 matching fields but OpenFlow
1.5 [25] already supports up to 45 fields. With the advent of
protocol-independent data plane (e.g., P4 [26]), a flow table
can be customized from arbitrary packet headers and metadata
combinations, even from protocols nonexistent today.

It is crucial to evaluate whether an algorithm can live up
to its expectations or whether an old algorithm can adapt to
a new situation. However, this is often a challenging task.
The scales and characteristics of flow tables have different
degrees of influence on an algorithm’s performance. Therefore,
a thorough evaluation requires a set of flow tables with
varied scales and fine-tuned characteristics. Due to privacy and
security concerns, it is difficult to acquire real flow tables from
production networks, let alone enough such tables with ideal

This paper is supported by NSFC (61872213, 62032013, 62272258), NSFC-
RGC (62061160489), and Guangdong Basic and Applied Basic Research
Foundation under Grant 2019B1515120031.

characteristics. As an alternative, researchers usually resort to
software tools (e.g., ClassBench [27]) to synthesize artificial
flow tables. However, these tools are becoming inadequate
to meet today’s requirements for various reasons. Some are
designed for conventional applications only (e.g., IP lookup
and 5-tuple IP packet classification), and some fail to provide
accurate table characteristics.

An ideal flow table benchmark tool should meet the fol-
lowing requirements: 1) Flexibility. The tool should be able
to generate flow tables with arbitrary sizes, number of fields,
matching types, and other intrinsic characteristics. 2) Ac-
curacy. All the characteristics of the generated flow tables
should conform to the input parameters and be verifiable. 3)
Repeatability. With the same set of input parameters, the flow
tables generated from different platforms or at different time
should be identical, allowing users to reproduce the exper-
iments and make comparisons independently. 4) Diversity.
Yet with different random seeds, different flow tables with the
same characteristics can be generated, allowing users to take
the average of multiple experiments and test the stability of
their algorithms. 5) Integrity. Affiliated packet traces can be
generated for each flow table to test the lookup performance.
6) High Performance. The tool should be reasonably fast,
especially for large flow tables and packet traces.

Unfortunately, to the best of our knowledge, there is no
such tool that can meet all these requirements. Therefore, we
develop FlowBench, a new flow table benchmark, to fill the
vacancy. FlowBench takes a different design principle. Instead
of extracting the characteristics from some real-world “seed”
flow tables and trying to retain them in the synthesized ones,
we start from some intrinsic characteristics that have a direct
impact on algorithm performance, and generate flow tables that
can accurately match the configurations of the characteristics.
Such a decision is due to the several drawbacks of the existing
approaches: 1) it is unwarranted that the speculative large
tables would still retain the same characteristics of the small
seed tables, so the test results on such tables cannot guarantee
an algorithm’s real performance in reality; 2) the synthesized
flow tables only vary in size and in a few preset classes,
which are insufficient for thorough algorithm evaluation; 3) the
synthesized tables can significantly deviate from the intended
target characteristics, especially for large table size, and the
synthesizing time increases exponentially when attempting to
reduce the deviation; 4) the available seed data are only for
conventional use cases (e.g., IPv4 ACL and Firewall) and
outdated, making the generated flow tables unsuitable for

today’s and future use cases. In contrast, although the flow
tables generated by FlowBench may not look “real”, they
can better reveal the true performance of an algorithm with
different levels of fine-tuned stress tests, and still allow fair
algorithm comparisons as long as the same benchmark is used.

The methodology of FlowBench is based on the Directed
Acyclic Graph (DAG) abstraction. Each rule in the flow table
corresponds to a node in the DAG. Therefore, the number
of nodes in the DAG (i.e., the DAG order) is equal to the
flow table size, the edge between two nodes indicates the
overlapping relationship of the two corresponding rules, the
topological order of the nodes reflects the rule priority, the in
and out-degree of a node signals the rule overlapping degree,
and each directed path forms a rule dependency chain. Clearly,
DAG grasps the essence of a flow table. The basic approach
of FlowBench is to construct a DAG satisfying the given
characteristics and derive a flow table from it. FlowBench can
generate large flow tables in a very short time (e.g., 10 rules
in two seconds). Each rule supports arbitrary number of fields
and each field can be of a matching type of Longest Prefix
Match (LPM), Range Match (RM), or Exact Match (EM).

The rest of the paper is organized as follows: we first
analyze the issues of existing benchmark tools (Section II),
and then present the principle, functions (Section III), and
algorithm (Section IV) of FlowBench. Next we evaluate
FlowBench and demonstrate its usability through experiments
(Section V). Finally, we review the related work (Section VI)
and conclude the paper (Section VII). FlowBench is open
source and available at https://github.com/Flow-Bench/Flow-
Bench.

II. MOTIVATION

ClassBench, proposed in 2007, is so far the de facto standard
flow table benchmark tool. Limited by its seeds, ClassBench
can only generate IPv4 5-tuple rules. In order to extend the
support for IPv6 and OpenFlow, some improved versions of
ClassBench, such as ClassBench-ng [28], are developed. These
tools all follow the same design principle and basic approach.
Taking ClassBench as the representative, it analyzes a few
samples of real flow tables for ACL, Firewall (FW), and IP
Chain (IPC), and extracts their characteristics as the seed for
flow table generation. The seed contains a set of conditional
probabilities derived from frequency statistics. Users can pick
one of the 10 seeds provided by ClassBench to generate flow
tables with different target sizes. By maintaining the statistical
similarity between the generated tables and the seed tables,
ClassBench claims that the generated flow tables can simulate
the real-world situations. However, the aging ClassBench can
no longer sustain its promise. Here are some details further
backing up the assertion given in Section L.

First, ClassBench is inefficient in generating large flow
tables and difficult to achieve the expected table size. Each
rule is generated independently according to the conditional
probabilities, so the rule duplication is unavoidable. Dedupli-
cation and redress are time-consuming. For example, when
using IPC1 as the seed and setting smoothness = 32,

Custom Custom
Parameters Parameters

Pre . Pre . Flow Table Flow Table Trace .
computing computing . Trace File
. Generator File Generator
Module Result File

Fig. 1: FlowBench’s workflow.

address_scope = 0, application_scope = 0, and expected
table size n = 10%, only 8,524 rules (85%) are generated.
When n = 10°, only 278,516 rules (28%) are generated. The
ratio of actual to expected size decreases for larger sizes,
smaller smoothness, or seeds from Firewall. The discrepancy
between the expected n and the actual size is troublesome.

Second, the seeds collected in the 2000s can no longer
reflect the current real network characteristics. New seeds need
to be introduced to keep up, but such an effort increases the
workload of researchers and the privacy issues may prohibit
effective data sharing. Meanwhile, the rapid development
of SDN and programmable networks make flow table rules
customizable, volatile, and lacking a realistic statistics basis.
As a result, ClassBench and such fall short of the needs of
researchers today.

Third, ClassBench overlooks the fact that the performance
of some algorithms is determined by the properties of the
DAG corresponding to the flow table [17], [29]. Generating
each rule independently, ClassBench has weak control over
the rule dependencies. Although ClassBench provides some
parameters such as smoothness, it is difficult to use them to
control dependencies responsively (see Section V-D). There-
fore, ClassBench cannot support straightforward performance
evaluation under explicit and direct DAG characteristics.

In light of such observations, we design FlowBench. We
focus on the flexibility rather than the authenticity of the
artificial rules, as long as the algorithms can be faithfully
evaluated and compared. According to the user needs, Flow-
Bench complements the ClassBench-like tools and supports
better controlled and more comprehensive evaluations for both
existing and future algorithms.

III. FLOWBENCH OVERVIEW

The workflow of FlowBench is shown in Fig. 1. Flow-
Bench generates flow tables based on DAG. Some common
graph-related computations are executed prior to any flow
table generation. To improve the efficiency, we execute such
computations once and save the result to a file as the data
preparation step. The flow table generator reads the file and
uses user-provided parameters to generate a flow table. After
the flow table is saved in a file, the user can use FlowBench’s
trace generator to generate the corresponding packet trace.

As shown in Table I, FlowBench offers a rich set of
parameters for accurate control of flow table characteristics.
FlowBench supports the size of a flow table, n, to be as large
as tens of millions, and it guarantees to generate exact n rules
as specified by users in one run. Users can also specify the
number of fields for a rule, and the bit width and match type

TABLE I: Parameters in Flow Table Generator

Parameter Symbol Type Typical Value
Size of Flow Table n Integer 4096
Field Number k Integer 5
Field Bit Width b~k Integer 32,32,16,16,8
Field Match Type timk LPM/RM/EM LPM,LPM,RM,RM,EM
Field Weight W1~k Double 32,32,16,16,8
Random Seed r Integer -
Depth Parameter D/D, Integer/Double 0~1 (for D,)
Edge Parameter E/E, Integer/Double 0~1 (for E;)
Optional Flags f Flags -

TABLE II: Parameters in Trace Generator

Parameter Symbol Type Typical Value
Number of Packets n Integer 4096
Flow Table File fri String 256.txt
Rule Locality
(Pareto Distribution) ar, br Double 10
Flow Locality £1by Double 11

(Pareto Distribution)

of each field. In addition, FlowBench allows users to assign a
weight to each field. The greater the weight, the more likely
FlowBench would establish dependencies on this field when
generating rules. The default weight value is the same as the
bit width of a field. A random value or the current time can
be used as seed r to vary the resulting flow tables. FlowBench
uses the Mersenne Twister Algorithm [30] to generate random
numbers to ensure consistency across platforms.

FlowBench uses two parameters, D and FE, to control the
form of the DAG, where D controls the node depth and F
controls the edge number. FlowBench allows users to specify
the exact value of the edge number E. If users decline the
direct control of E, FlowBench allows the use of a relative
value E, between 0 and 1 instead. £/, = 0 means ¥ = 0, and
FE, = 1 means the maximum value of F that FlowBench can
generate. FlowBench converts the relative value to an exact
value in subsequent calculations. In a DAG, the depth of a
node is the maximum depth of its direct predecessors plus one,
or 0 if it has no predecessor. The average node depth is an
important DAG property. To be consistent with £/, FlowBench
accepts the parameter D as the sum of the depths of all nodes.
Users can also provide a relative value D,., similar to the
concept of F,.. Because the average depth and the edge number
are correlated, D and E or their corresponding relative values
D, and FE, are not allowed to be specified at the same time.
The last parameter, f, is used to support the optional features
of FlowBench, which will be described in detail in Section
IV-F.

Table II shows the parameters used in FlowBench trace gen-
erator. Similar to ClassBench, we use the Pareto Distribution to
describe the traffic locality. We consider two types of localities:
the first type is for the flow level locality (i.e., a small number
of flows in the trace are elephant flows while the most flows
are mice flows); the second type is for the rule level locality
(i.e., a small number of rules are hit by a majority of flows
while the most rules are hit by a few flows). By default, the

: | ': |

A U A .

! | Quad- Virtual 1+)/:Qu4

: | DAG O Nodes 1 / ‘~\ | DAG

: 1Selection O)_| Setection i | b iSelection

! _ 1 O g .

! 1 1 Il

: | o) ARy Q

E T AN/ A & 9

! Virtual | Solid ! Virtual | Solid

oy LayerO ! Layer 0 i Layer1 ! Layer 1
1 ~<o 1
- T

Fig. 2: A layer-based search example for n = 12.

Instantiated

Candidate Candidate

Solid Rules

<
=3

g o
3 00 0>
10* 10*
g o
[a)

5

8

s

[e4

.

100

1010** 10*
10110* 10*
101*** 100
101100 10*

1010** 10*
10110* 10*
101*** 100
101100 10*

Flow Table

*O 4 %

* O % %

Instantiation
I

100

S 110
i 10110 — 000
ffffffff 101
\;mual 110
arent 000

101
100
100

Virtual Rules

l\/inual Rules Selection

)

110
000
000
101

101110 101
101000 101
101000 100
101101 100

i
3 : Search on
1 the next
! ‘L,: Layer

- < ' (as Parent)
1 101101 100 Lb

cork

orOoOoORRER

Fig. 3: Generating four solid and four virtual rules.

Pareto parameter b of rule locality is set to O to exclude the
rule level locality, similar to ClassBench-like tools.

IV. ALGORITHM DESIGN

FlowBench uses a layer-based search algorithm to generate
a DAG as well as the corresponding flow table. As shown in
Fig. 2, for efficient DAG control, we split the search process
into interlaced solid layers and virtual layers. The solid layers
produce solid rules which are output to the resulting flow table,
while the virtual layers contain virtual rules as intermediate
variables for inter-layer edge extension.

The search starts from the virtual layer O, which contains
only one virtual rule, the wildcard. We perform a solid rule
selection to construct the solid layer 0. In this step, a sub-
DAG of order 4 (referred to as Quad-DAG) is selected from a
number of pre-computed candidates. The selected Quad-DAG
determines the four solid rules in the solid layer 0. On the
other hand, among the pre-computed candidates, each Quad-
DAG has at least five corresponding candidate virtual rules
(described in detail in Section IV-A). According to our design,
while the virtual rules may depend on 0~4 solid rules in the
Quad-DAG, they are independent of each other, so they appear
to be isolated nodes in the DAG. Four of them are chosen to
construct the virtual layer 1.

The above process includes two steps: Quad-DAG selection
and virtual-node selection. We take the wildcard rule on the
virtual layer O as the parent, and generate four solid and four
virtual rules in the two subsequent layers. An example of the
procedure for generating two-field rules is shown in Fig. 3.
An instantiation process is used to adjust the matching range
of each solid or virtual rule to be a subset of the parent, under

Isolated Nodes :_ VZ_: :_ §/_3_:

I__K_ (R —J
IR \ IRV
Vil n—(SO F--» S2 V5 |
Z277) Quad-DAG h/ N TT,
b v2 JN—Bl S3 V7
o | Vel |

Fig. 4: A Quad-DAG example.

the premise that the dependencies are unchanged. In Fig. 3 we
simply concatenate the prefixes together, but the actual process
is more complicated (see Section IV-E). After the instantiation,
the solid rules are output to the flow table, and the virtual rules
become the new parents for searching on the next layer. The
remaining n—4 rules are divided into four equal parts and each
part is to be generated by extending one of the four virtual
rules in the recursive process. Fig. 2 shows an example for n
= 12, in which each node on the virtual layer 1 is assigned to
generate two solid rules. Therefore, we only need to pick two
of the four solid rules in each Quad-DAG on the solid layer
1 without needing to construct the virtual layer 2.

In the rest of this section, we first discuss the information
included in the pre-computed candidates (Section IV-A) and
the maximum D and E that FlowBench supports under a given
n (Section IV-B). Then we give the methods of Quad-DAG
selection (Section IV-C) and isolate-node selection (Section
IV-D), and prove that the user parameters can be satisfied.
Next, we show how candidates are instantiated to enhance rule
diversity and guarantee that their matching range is a subset
of the parent (Section IV-E). Finally, we present the optional
features supported by FlowBench (Section IV-F), and briefly
describe the design of the trace generator (Section IV-G).

A. Compute Quad-DAG Candidates

The independent isolated nodes on a virtual layer (corre-
sponding to virtual rules) lead to the independence of Quad-
DAGs with different parents. Intra-layer node dependency
exists only within a certain Quad-DAG and can be controlled
in Quad-DAG selection.

Obviously, the larger the sub-DAG, the richer the diversity.
However, as the sub-DAG order increases, the number of sub-
DAG patterns increases rapidly. Let the order of a sub-DAG
be s. Considering that any sub-DAG of an order-s directed
complete graph may correspond to a candidate, we need to
perform the computation for at least 2 7 Cases. The number
is 64 when s = 4, but becomes 32,768 when s = 6. Since
we need to use a depth-first search algorithm with high time
complexity to find the candidates, we choose only Quad-DAGs
(i.e., s = 4) as the candidates for the trade-off.

There are a total of 64 order-4 DAGs. On this basis, we
distinguish the edges into two categories for diversity: an
edge is categorized as complete if the matching range of one
rule completely covers the other, or categorized as partial
if the rules are only partially overlapping. Excluding some

TABLE III: The pre-computed data of the example

Field Number 2
Fieldl Field2 | Djord FEjore

Maximum Prefix Length 3 1
SO OF* * 0 0
. S1 10* * 0 0
Solid Rules ¥ T 0 T o)
S3 100 * 3 4
VO 110 1 0 0
Vi 000 1 1 1
V2 101 1 1 1
. V3 110 0 2 1
Virtual Rules VZ 000 0 5 5
V5 101 0 2 2
V6 100 1 3 2
V7 100 0 3 3

equivalent or unconstructable cases, 199 Quad-DAG candi-
dates are left. Thanks to the pruning technology, the entire
pre-computing process can be completed in a few seconds.

These candidates are saved in an output file for subsequent
use. Fig. 4 shows one of the Quad-DAGs as an example,
in which complete edges are represented by solid lines and
partial edges are represented by dashed lines. In the output
file, the profile of a candidate Quad-DAG covers the following
aspects, as shown in Table III:

1) A set of four solid rules. These rules contain no more
than four LPM fields, each using a bit width of no more
than 4.

2) The field number k, and the maximum prefix length on
each field.

3) The sum of the depths of the first j solid rules, D, for
7 = 1,2,3,4. This property is used to make the selected
Quad-DAG satisfy the parameter D. Considering that
the bottom solid layer may only select the first j rules
in a Quad-DAG, each case of j must be considered here.

4) The number of edges in the sub-DAG containing the
first j solid rules, F;. Similarly, this property is used to
make the selected Quad-DAG satisfy the parameter E.

5) A set of at least five virtual rules. The virtual rules use
the same k fields as the solid rules, and the prefix length
on each field does not exceed the maximum value. In
order to control D and E in the subsequent recursion,
each virtual rule also contains two properties: d and e.
If a virtual rule is given the highest priority and added
to the Quad-DAG, its depth is d and its degree is e.

The algorithm guarantees that for each solid rule r, there
exists a corresponding virtual rule r,, whose matching range
is a subset of r, and does not overlap with the range of
the solid rules with a higher priority than rs. This property
makes sure every generated solid rule can be hit by some
packet. Meanwhile, it guarantees that there exists a virtual
rule 7,9 whose range does not overlap with any solid ranges.
In other words, we make it possible that some packets cannot
hit any solid rules. Therefore, there are at least five virtual
rules for each Quad-DAG. The extra virtual rules come from
the overlapping ranges of the multiple solid rules.

B. Compute Maximum D or FE

FlowBench supports a wide range of values for D and E
(see Section V-D), but there exist the theoretical limits. In case
a user gives a D or E beyond the limit, FlowBench reports
an error. We denote the maximum parameters under a given
n as Mp(n) and Mg(n).

First we discuss the case of Mg (n). When n<4, all rules are
included in one Quad-DAG, so the case that maximizes F is
an order-n complete graph, indicating Mg(n)=(n—1)!. When
n>4, we need to select a Quad-DAG first. For maximization,
the order-4 complete graph is selected, which has four solid
rules and six edges. The remaining n—4 rules should also
depend on every rule in the Quad-DAG, resulting in 4(n —4)
edges. Then we allocate the remaining n —4 rules to R; (j =
1,2,3,4; Z?Zl R; = n —4) and assign them to four virtual
nodes. The maximum in each part is Mg(R;). In summary,
we get the following recursive formula:

ME(n){(n_l)!’ n<4

1
4n —10+ Y Mp(R)), n>4 M

There is a significant correlation between the depth and in-
degree of nodes. In fact, it can be obtained that Mp(n) has
exactly the same recursive formula as Mg(n) by a derivation
similar to the above. Therefore, we denote the maximum value
for both parameter in a uniform form Mp(n).

C. Quad-DAG Selection

Taking a certain virtual node as the parent, we need to select
a Quad-DAG from the 199 candidates. Three parameters play
a role in the selection process:

1) The number of rules to be generated, denoted as n.

2) The number of available fields, denoted as k,. If the
parent has used up all the bits on a field for an exact
value, the field becomes unavailable. EM fields are
always unavailable in any case.

3) The given parameter P. Due to the correlation between
D and F, the same symbol is used for either one.

Only Quad-DAGs with no more than k, fields are potential
candidates in the selection. On this basis, the selection result
depends on n and P. When n < 4, we only need to select
a Quad-DAG whose first n rule(s) satisfy the parameter P.
When n > 4, we denote the parameter (D or E) of the Quad-
DAG itself as P;, which is between 0 and 6, and denote the
parameter (d or e) of the j-th selected virtual rule as P ;,
which is between 0 and 4. The maximum of P ; for j =
1,2,3,4 is denoted as P» ,,,q,. After selecting a Quad-DAG,
the remaining n—4 rules will be divided into four parts of size
R;, and their corresponding parameters are denoted as P(R;).
So we get a formula:

4
P=pr +Z[P2,jRj + P(R;)] 2
i=1

where P(R;) and P, ; satisfy

0 < P(R;) < Mp(Rj) 3)

0 S P27j S P2,ma;v (4)

According to Equation 2, 3, and 4, we get three constraints
that P, and Ps 4, must satisfy:

P <P &)
4
P >P—4(n—4) - Mp(R)) (6)
j=1
1 4
P2,mam2m prlfj;MP(RJ) (7)

Equation 5, 6, and 7 limit the range of candidates. Then we
give each P; a weight. Candidates with the same P; divide the
weight equally. In order to make the parameter of Quad-DAGs
on different layers relatively uniform, we make oy = 6- %(n)
and take N(a; — Py) as the weight of Py, where A is the
probability density function of a normal distribution with p=0.
A larger standard deviation of \/; means worse uniformity and

better diversity, and vice versa. The typical value of o is 3.

D. Isolated-node Selection

When n>4, we need to select four virtual rules to prepare
for searching on the next layer. These rules are selected
sequentially and independently. When selecting the j-th virtual
rule, according to Equation 2, 3, and 4, we get two constraints
that P ; must satisfy:

P. .
Py < 8
2,7 = Rk ()
1 4
Poj > o | Prj =Y Prmazlt =D Mp(Ri)| (9
k k>j k=1
where
J
Pj=P—P =) PR (10)
k=1

is the remaining parameter to be assigned in subsequent steps.

Similar to the Quad-DAG selection, we give a weight to
each virtual rule which satisfies Equation 8 and 9. We make
ap=4- ﬁ and take N3(ag — Py) as the weight of a virtual
rule with P, where A5 is the probability density function of
another normal distribution with u=0 and c=2.

Because the virtual rules are selected independently, we
may select a certain rule r, more than once. In this case,
we randomly choose one field in r, and extend its prefix. For
example, if a one-field rule r, is selected twice and the prefix
is 010*, we extend it by one extra bit to 0100* and 0101*. If
it is selected three or four times, two extra bits are required.
After such extension, we guarantee that the four virtual rules
are distinct and independent of each other.

E. Instantiation

We complete the instantiation work in three steps to finalize
the selected results into tangible solid and virtual rules.

1) Bit Instantiation: As shown in Table III, the pre-
computed result comes from a depth-first search in which 0
is searched before 1 for each bit, resulting in imbalance and
limiting the diversity. To solve this problem, we perform a
bit instantiation on the solid and virtual rules selected. For
each of the k fields, we generate a random mask and use it to
XOR the field in every rule. This is equivalent to performing
multiple symmetric transformations on a set of hypercubes in
the matching space, which does not change the dependencies
between the rules.

2) Field Instantiation: FlowBench allows users to specify
the number, weights, bit widths, and match types of the fields
in a rule. Since the rules selected from the pre-computed
results (abbreviated as pre-computed rules) contain no more
than four fields, and they are all LPM fields, in order to meet
the user specifications, we need to relocate the fields.

To guarantee the matching range of the instantiation result is
a subset of the parent, we use the remaining bit width (RBW)
of each field to describe its capability to accept a pre-computed
LPM field. The exact definition of RBW depends on the match
type.

1) For LPM fields, RBW = field bit width - prefix length

of the parent.

2) For RM fields, RBW = |log R|, where R is length of

the parent’s matching range.

3) For EM fields, RBW = 0 regardless of the parent.

For each of the k& pre-computed rules, we randomly select
one of the fields that has never been selected before, according
to the user-provided weights. If its RBW is equal to or greater
than the maximum prefix length in pre-computed rules, we
relocate the pre-computed field to the selected field. Otherwise,
we ignore the field and re-select, until we find a selected field
with a sufficient RBW or there is no field to select from. The
latter situation may occur when non-EM fields are too narrow
and n is too large, which leads to an error report.

EM fields can never accept pre-computed fields because
RBW = 0. After an EM field is selected according to the
weights, we will generate a random value, and every solid or
virtual rule will be assigned with the exact value on the field.

3) Rule Instantiation: Finally, we restrict the matching
range of these solid and virtual rules to a subset of the parent.
The embedding method depends on the field type.

1) For the LPM fields, we concatenate the prefixes and sum
the prefix lengths.

2) For the RM fields, we linearly interpolate the endpoints
from the entire matching space to the range of the parent.

3) For the EM fields, if the parent has an exact value, the
value is inherited; otherwise no change is made.

After the above steps, we complete the whole instantiation
process. The solid rules are added to the flow table as part of
the final result, and the virtual rules are used as the parents
for searching in the next layer if n>4.

F. Optional Features

In addition to the basic algorithm, FlowBench provides the
support for some optional features. Users can decide whether
or not to enable these functions.

1) Arbitrary Ranges (AR): Since the pre-computed fields
are all of the LPM type, the RM field generated by the above
algorithm appears as a range that can be represented by a
prefix. To support arbitrary ranges like [1, 16], we introduce
an algorithm which can be executed after rule instantiation.

The algorithm applies a random offset to the left and right
endpoints of every RM field in every solid or virtual rule
independently. Suppose we want to apply an offset to the
left endpoint of range [I,7). We make U = || as the
initial value of the upper bound of the random offset. Then we
generate a random offset A between [—U, U] and consider the
new range [max{L,l + A},r), where L is the left endpoint
of the parent. The new range will replace the old one if no
dependency would be affected; otherwise, we let U = L%J
and regenerate the offset. The initial value ensures the range
is reduced by at most half of the original size, avoiding the
rapid decline of RBW.

Since multiple iterations are needed, this algorithm may
affect the performance of FlowBench. Given many flow table
algorithms require converting a range to prefixes first (e.g., for
TCAM-based tables), we made this feature optional.

2) Countermeasures for insufficient bit width: In Flow-
Bench each solid layer requires a bit width of 3 to 5 bits.
Therefore, insufficient bits will make it difficult to generate
a large-scale flow table. For example, a 32-bit destination IP
can only hold 6 layers (<10* solid rules). FlowBench takes
two measures to solve this problem. (1) An optional dense
mode is provided, in which another pre-computed set of Quad-
DAG candidates will replace the common one. The set can no
longer guarantee that every solid rule can be hit by packets,
but requires fewer bits to generate a large table. (2) It is not
very efficient to divide the matching space into four parts at
the cost of 3 to 5 bits on each layer. If the DAG is relatively
sparse, we can divide the entire space into several equal parts
first, and then apply the layer-based algorithm in each part.
Equal division use far fewer bits, which enables FlowBench
to generate up to 232 rules on destination IP when E = 0.

3) Parameters larger than Mp(n): Eq.l indicates Mp(n)
= O(nlogn), but D and E can be larger. In fact, the
upper bound reaches O(n?) for complete graphs. An order-
n complete graph requires n—1 bits, so the theoretical bound
is limited by the number of available bits.

FlowBench provides an optional feature to achieve param-
eters larger than Mp(n). We first build a Trie, in which
each internal node corresponds to a solid rule, and each
external node acts as an initial parent to apply the layer-
based algorithm. Through a simple dynamic programming
(DP) method, we can calculate the upper bounds of D or
F under the condition that the size of the Trie is nt and the
height is hr. We select the Trie with the smallest A to save
as many bits as possible. This approach allows FlowBench to
generate a relatively larger range of parameters.

G. Design of Trace Generator

Apart from the flow table generator, FlowBench provides a
packet trace generator to generate the corresponding traces
for a given flow table, which are useful to evaluate some
lookup algorithms. The trace generator is a separate program
from the flow table generator, but needs to take the flow
table characteristics into consideration. In addition, like the
characteristics of real traffic, the generated traces can be made
to exhibit traffic locality to test the performance of certain
algorithms (e.g., flow caches).

The ClassBench-like flow table generators cannot directly
control the dependencies between rules, so some rules may
never be hit because their ranges are fully covered by some
other rules with higher priority. As a result, the ClassBench-
like trace generators only consider the flow-level locality, but
ignore the rule-level locality.

In contrast, by adding constraints to the solid rules in a
Quad-DAG (see Section IV-A), FlowBench guarantees that
every rule in the flow table can be hit by certain packets.
Therefore, FlowBench’s trace generator is able to present the
locality at both the flow and rule level. According to the
distribution Pareto(a,, b,), we first calculate how many flows
hit each rule. Then we calculate how many packets are in each
flow according to the distribution Pareto(ay, bs). Finally, we
do a random shuffle and output the packet trace.

V. EVALUATION

In this section, we evaluate the advantages of FlowBench
from three aspects: flow table scale (Section V-B), custom
field configuration (Section V-C), and DAG control (Section
V-D). In addition, we demonstrate the validity (Section V-E)
and advantage (Section V-F) of FlowBench.

A. Evaluation Setup

We implement FlowBench using 6,417 lines of C++ code
and compare it with ClassBench (since the ClassBench-like
tools all use a similar approach, we select the classic Class-
Bench as their representative). FlowBench and ClassBench
are hereinafter referred to as FB and CB, respectively. The
configurations are summarized in Table IV.

TABLE IV: Configuration of the experiment platform

Item Configuration

Mainboard Supermicro X11DPG-OT-CPU

CPU Intel(R) Xeon(R) Gold 5218 CPU @ 2.30 GHz
RAM DDR4 128 GB (2666 MT/s)

(0N Ubuntu 18.04.5 LTS

Core version 4.15.0-169-generic

G++ version 7.3.0

Compile options -std=c++17 -O2 -fconcepts-ts

The actual size of the flow table generated by CB is smaller
than the number specified by user. For comparison, we first
use CB to generate a flow table, and take the actual size of
it as n; then we use FlowBench to generate a flow table of
the similar 5-tuple rules with the same size n. We modify the
source code of CB to make its random seed the same as ours

S =

| S

Time Consumption (s)
[- E:v — =]
q

ixe}
o)
iy X
®
Actual Size /
Expected Size (%
8 2
~
A

. 3
-£#- FB W,
Y-y
5 6 3

10° 10 10 10 10 10t 100 10 10
Size of Flow Table Expected Size of Flow Table

3
w4
o ¥
b
b

Fig. 5: Time consumption to Fig. 6: Comparison of the ex-
generate a flow table. pected and actual table size.

(note that by default the random seed of CB is time-variant,
making it inconvenient for repeating experiments).

If not specified otherwise, we set D,=0.1 in FB, and set
smoothness=32, address_scope=0, application_scope=0,
and seed= IPC1 in CB.

B. Evaluation on Flow Table Scale

First, we compare the time consumption of FB and CB to
generate the same flow table size, and show the results in
Fig. 5. Since the time complexity of FB is O(n), there is an
approximately linear relationship between the time consump-
tion and n.

Although CB’s time complexity is also O(n), where n
represents the expected table size provided by user, the number
of distinct rules generated by CB, n’, is smaller than n.
The ratio of n’/n shrinks as n grows, as demonstrated in
Fig. 6. This problem causes a 380x time consumption gap
between CB and FB when generating a table containing 10°
rules. If the feature of Arbitrary Ranges (AR) is enabled,
FB’s time consumption will increase by 2-3 times, but still
far better than CB. These results show that FlowBench has
a significant advantage over ClassBench in generating large-
scale flow tables, and can always generate a table with the
expected size.

C. Evaluation on Custom Field Configuration

This section demonstrates the flexibility of FlowBench in
terms of rule fields. We first compare the performance of
FlowBench under four flow table types:

1) IPv4 5-tuple.

2) OpenFlow 1.0 with 12 fields.

3) A protocol with 12 32-bit LPM fields (Custom-12).

4) A protocol with 24 32-bit LPM fields (Custom-24).

As shown in Fig. 7, the curves for different protocols
are very close, indicating the time consumption of FB for
generating a flow table is approximately proportional to the
field number, but less affected by the bit width and match
type.

Next we verify the effectiveness of the field weight pa-
rameter using IPv4 5-tuple rules (i.e., SIP, DIP, SP, DP, and
protocol). Fixing the sum of weights to 1, we set the weights
of SP, DP, and protocol to 0, and adjust the weights of SIP
and DIP. When the weight of SIP changes from 0 to 1, the
weight of DIP changes from 1 to 0. We set n = 1,024, and get
multiple sets of data by different random seeds. Fig. 8 shows

2 v
=16 Sl 5 -
e 209 12 \‘ 5
- - - -1 g
E 14 K - 5-tuple = N /V
o o ---- OpenFlow 1.0 010 & !
&® -£3- Custom-12 5 ™ /
£12 - N
_g -©- Custom-24 ® " ~¥- SIP
3 5 8 A |-8- b
. OB G B T EEEE "-:b A Y
3 Z *
Sos z 6 e \
2 v =
an V-9 X =
: TR Vg gy yy M h:

4 5 6

10 10° 10
Size of Flow Table

0.1 02 03 04 05 06 0.7 08 0.9
Weight of SIP

Fig. 7: Time consumption for
different protocols.

Fig. 8: Effect of weights on
average prefix length.

251| =%#- CB, smoothness , rat 251| =%~ CB, smoothness , rat
-£3- CB, address_scope Ral -£3- CB, address_scope Ral
20| ~©~ CB, application_scope | * 20| ~©~ CB, application_scope |5
-4~ FB, D, g -4~ FB, E,
L=} % £ %
215 K g1s K
?D # z #
Z 10 K 010 X
< / 2% - n]
K < \ K /
5 Ed s N # /
% 4 o)
Vu‘f’v 2 ya| LN 2
T - -0 —o_ =
0| B E- R B aveE o o BB S B E e eV
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0

Parameter (Normalized) Parameter (Normalized)

Fig. 9: Effect of parameters
on average depth.

Fig. 10: Effect of parameters
on edge number.

that the effect of weights on the average prefix length is also
approximately linear.

D. Evaluation on DAG Control

This section shows that the parameters of FB can effectively
control the DAG properties, and D and E can be selected in
a large range. We also observe the effect of smoothness,
address_scope, and application_scope of CB on the prop-
erties of the DAG. For effective comparison, we normalize all
the parameters to the interval of [0, 1]. The flow table size is
set to n=1, 024. Since CB cannot accurately generate n rules,
we use the average depth and average in-degree of nodes for
comparison.

As shown in Fig. 9, the parameters in CB cannot control the
depth effectively. The DAG generated by CB has a relatively
lower average depth, while FB can accurately generate a large
range. For the number of edges, as demonstrated in Fig. 10,
CB also shows poor controllability. Taking the address_scope
parameter as an example, in the range of [—1,0.6] (i.e., [0,0.8]
in Fig. 10), it has little effect on the number of edges and has
poor sensitivity, while in the range of [0.8,1] (i.e., [0.9,1]
in Fig. 10) it is too sensitive to control. The line of FB
remains straight because its parameters directly control the
DAG, allowing users to get exactly what they want.

Fig. 10 also shows that for CB, the average in-degree is
negatively correlated with smoothness, and positively cor-
related with address_scope. Therefore, we can estimate the
range of average in-degrees by letting these parameters take

CB - IPC1
CB-FWl1
CB-ACLI |

FB

10 10' 10
Average In-Degree

Fig. 11: Range of average in-degree.

=)
C
W
W

HiCuts, s=48
HiCuts, s=0

HiCuts, E,=0.1
4 HiCuts, E,=0.3
HyperCuts, E,=0.1
HyperCuts, E,=0.3

~

Memory Consumption (Bytes)
3 3,
X,

Memory Consumption (Bytes)
S

HyperCuts, s=48
HyperCuts, s=0

o

2 4 6 8 0 2

4 6 8
Size of Flow Table (K) Size of Flow Table (K)

Fig. 12: Space evaluation of Fig. 13: Space evaluation of
Hicuts&HyperCuts with CB. Hicuts&HyperCuts with FB.

the endpoint values. Fig. 11 shows that different seeds result
in different in-degree ranges for CB, but the ranges are all
covered by the range of FB.

E. Validity for Algorithm Evaluation

In this section, we take the classic packet classification
algorithms HiCuts [31] and HyperCuts [32] as examples to
demonstrate the validity of FB. For comparison, we first
observe the results of evaluation using CB. We use ACLI1
as the seed, set address_scope and application_scope to
0, and observe the performance of these two decision-tree
algorithms with the configurations of smoothness=48 or
smoothness=0 (smoothness is denoted as s for short in
Fig. 12 and Fig. 14), representing sparse and dense cases,
respectively.

We evaluate the algorithms on both space and lookup time.
We measure the memory consumption as the bytes consumed
by the decision tree. On the other hand, we use the trace
generator provided by CB to generate trace, and measure
the throughput of the algorithm with the memory bandwidth
consumption. We observe the average number of dependent
memory accesses per packet lookup [33]. The number of
packets in the trace is 16 times the size of the flow table, and
has a high flow-level locality as Pareto(1,1). The evaluation
results are shown in Fig. 12 and Fig. 14.

In FB we set £, = 0.1 and E, = 0.3 to represent the
sparse and dense cases, respectively. FB’s trace generator is
also configured with the same settings to ensure meaningful
comparisons. The corresponding evaluation results are shown
in Fig. 13 and Fig. 15.

By comparing Fig.12~15, we can see that FB shows similar
trends to CB and can draw consistent conclusions. For memory
consumption, HiCuts is much higher than HyperCuts, and

800 Bl

£3
HiCuts, s=48

1600

800

N
S
S

HiCuts, E,=0.1

HiCuts, E,=0.3
HyperCuts, E,=0.1
HyperCuts, E,=0.3

)

=3

S
IS
=]
S

HiCuts, s=0
HyperCuts, s=48
HyperCuts, s=0

Avg. Bytes/Packet Lookup
[
S

Avg. Bytes/Packet Lookup

100

0 2 4 6 8

Size of Flow Table (K) Size of Flow Table (K)

Fig. 14: Time evaluation of
Hicuts&HyperCuts with CB.

Fig. 15: Time evaluation of
Hicuts&HyperCuts with FB.

R
n

»
=

<@
n

@
o

®

'

!

\

\

\

\

\

|

\ jo)
uh i
1

\

\

\ 98600,

N
[

!
\

A 2o

\

|

\
v/

; o 1.50
=

/

&

\

\

} yoy y=y @

JIN BBE gEE T\ g z .

\ t 1.001
/

¥R gy P g PRy Yoy 015l &

0 10 20 30 40 50 60 40

smoothness

/ v_v,v_v—v-vwfv—v—v
o

Avg. TCAM Entry Move
o

n

60 80 100
Edge Number (K)

Fig. 16: Performance Evalua-
tion of CAO_OPT with CB.

Fig. 17: Performance Evalua-
tion of CAO_OPT with FB.

the density of DAG has no significant impact on memory
consumption for both algorithms. On the other hand, HiCuts
requires fewer memory accesses per lookup and therefore
has higher throughput. Furthermore, the density of the DAG
has little influence on the throughput of HiCuts, but has a
significant effect on HyperCuts. A sparse DAG implies a flat
decision tree, which lowers the performance advantage of
HyperCuts.

F. Advantage in Algorithm Evaluation

We take the TCAM update algorithm CAO_OPT [34] as an
example to show the advantage of FB. We generate a flow table
of n=4,096 rules, from which we randomly select n * ratio
rules as initial entries of TCAM, and other rules as updates.

As demonstrated in Fig.17, the performance of CAO_OPT,
i.e., the average number of TCAM entry moves for each
update, is related to the number of edges in the DAG. It is more
sensitive when the DAG is relatively sparse, and the effect is
not significant when the DAG is denser. In contrast, such an
observation is difficult to be derived from the evaluation result
using CB as shown in Fig. 16, due to the inability of CB for
precise DAG control.

This example shows the unique advantage of FB in the
evaluation of TCAM-based flow table algorithms. Thanks to
the greater flexibility of FB, researchers are empowered to
gain more insights in understanding an algorithm.

VI. RELATED WORK

According to the number of fields in the generated rule
table, existing tools can be classified into single-field rule table
generator [35], [36] and multi-field rule table generator [27],
[28], [37], [38]. The former methods, such as NRG [35] and
V6Gene [36], are used to generate IPv6 forwarding tables in
the early stage of IPv6 networks.

Multi-field rule tables are usually applied for Firewall, QoS,
traffic management, and SDN flow tables [28]. The approaches
widely used at present are derived from ClassBench proposed
in 2007. These tools all use the data generation method based
on conditional probability. ClassBenchv6 [37] can generate
IPv6 5-tuple rule table, which adopts the idea of mapping from
IPv4 rule table in the same way that NRG generates IPv6
prefixes. Based on ClassBench, MatouSek et al. developed
a rule table generation tool ClassBench-ng [28] for IPv4,
IPv6, and OpenFlow 1.0. ClassBench-ng improves the rule
generation process to make the rule table more consistent
with the statistical characteristics of the real flow tables.
Specifically, assuming that the number of rules to be generated
is n, ClassBench-ng first calls ClassBench to generate a larger
rule table (e.g., 100n), and then iteratively selects the rules that
obey the parameters on the Trie constructed by SIP and DIP.

In summary, the conditional probability-based methods ex-
tract some statistical features (i.e., conditional probability)
from real data set, and make customized corrections to these
statistical features according to the parameters given by users,
thereby generating flow tables resembling real flow tables.

These methods aim to generate rule sets that approximate
to the seeds on some selected statistics and wish such approx-
imation can reflect the reality. However, such an assumption
is unproven and some important but non-statistical features,
e.g., rule dependencies, are ignored. Moreover, limited by the
small set of seeds, they can only generate limited types of flow
tables and are difficult to expand in scale, failing to meet the
diverse needs of the current and future applications.

VII. CONCLUSION

The open-source FlowBench can generate large-scale flow
tables containing millions of rules in seconds. The number,
type, and size of rule fields can be customized by users. With-
out relying on real-world table samples, FlowBench recur-
sively constructs a DAG-based on user-specified characteristics
and uses it to synthesize a more flexible flow table. It provides
accurate control over the average depth or edge number of the
DAG, and can generate feature-rich flow tables to meet the
algorithm evaluation requirements.

We expect FlowBench to become a universal tool for
evaluating flow table related algorithms (e.g., data structure,
lookup, and update). We open source FlowBench. More
detailed information and the source code can be found at
https://github.com/Flow-Bench/Flow-Bench. We invite the re-
search community to use it, and provide feedback and contri-
butions to improve FlowBench. In our future work, we will
use FlowBench to evaluate more existing flow table related
algorithms and document the findings.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

REFERENCES

M. Kuzniar, P. Peresini, and D. Kosti¢, “What you need to know
about sdn flow tables,” International Conference on Passive and Active
Network Measurement, pp. 347-359, 2015.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM computer communication review,
vol. 38, no. 2, pp. 69-74, 2008.

P. Saggurti, “An Introduction to TCAMs,” 2021. [Online].
Available: https://www.synopsys.com/designware-ip/technical-bulletin/
introduction-to-tcam.html

A. X. Liu, C. R. Meiners, and E. Torng, “Tcam razor: A systematic
approach towards minimizing packet classifiers in tcams,” IEEE/ACM
Transactions on Networking, vol. 18, no. 2, pp. 490-500, 2009.

O. Rottenstreich, R. Cohen, D. Raz, and I. Keslassy, “Exact worst
case TCAM rule expansion,” IEEE Transactions on Computers (TOC),
vol. 62, no. 6, pp. 1127-1140, 2012.

N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Cacheflow:
Dependency-aware rule-caching for software-defined networks,” Pro-
ceedings of the Symposium on SDN Research, pp. 1-12, 2016.

R. Li et al., “Taming the wildcards: towards dependency-free rule
caching with FreeCache,” in Proceedings of the 28th International
Symposium on Quality of Service (IWQoS), 2020, pp. 1-10.

K. Kannan and S. Banerjee, “Compact TCAM: Flow entry compaction in
TCAM for power aware SDN,” in Proceedings of the International con-
ference on distributed computing and networking (ICDCN). Springer,
2013, pp. 439-444.

H. Liu, “Routing table compaction in ternary CAM,” IEEE Micro,
vol. 22, no. 1, pp. 58-64, 2002.

D. E. Taylor, “Survey and taxonomy of packet classification techniques,”
ACM Computing Surveys (CSUR), vol. 37, no. 3, pp. 238-275, 2005.
P. He, G. Xie, K. Salamatian, and L. Mathy, “Meta-algorithms for
software-based packet classification,” in 2014 IEEE 22nd International
Conference on Network Protocols, 2014, pp. 308-319.

T. Yang, A. Liu, Y. Shen, Q. Fu, D. Li, and X. Li, “Fast openflow table
lookup with fast update,” 04 2018, pp. 2636-2644.

J. Daly and E. Torng, “Bytecuts: Fast packet classification by interior
bit extraction,” 04 2018, pp. 2654-2662.

Z. Liu, S. Sun, H. Zhu, J. Gao, and J. Li, “Bitcuts: A fast packet classi-
fication algorithm using bit-level cutting,” Computer Communications,
vol. 109, 05 2017.

J. Daly and E. Torng, “Tuplemerge: Building online packet classifiers
by omitting bits,” 07 2017, pp. 1-10.

W. Li, X. Li, H. Li, and G. Xie, “Cutsplit: A decision-tree combining
cutting and splitting for scalable packet classification,” 04 2018, pp.
2645-2653.

P. He, W. Zhang, H. Guan, K. Salamatian, and G. Xie, “Partial order
theory for fast tcam updates,” IEEE/ACM Transactions on Networking,
vol. 26, no. 1, pp. 217-230, 2017.

K. Qiu, J. Yuan, J. Zhao, X. Wang, S. Secci, and X. Fu, “Fastrule:
Efficient flow entry updates for tcam-based openflow switches,” IEEE
Journal on Selected Areas in Communications, vol. 37, no. 3, pp. 484—
498, 2019.

Y. Wan, H. Song, H. Che, Y. Xu, Y. Wang, C. Zhang, Z. Wang, T. Pan,
H. Li, H. Jiang et al., “FastUp: Fast TCAM Update for SDN Switches
in Datacenter Networks,” in Proceedings of the 4l1st International
Conference on Distributed Computing Systems (ICDCS). 1IEEE, 2021,
pp. 887-897.

Y. Wan, H. Song, Y. Xu, C. Zhang, Y. Wang, and B. Liu, “Adaptive batch
update in tcam: How collective optimization beats individual ones,”
IEEE INFOCOM 2021 - IEEE Conference on Computer Communica-
tions, in press.

H. Song and J. Turner, “Nxg05-2: fast filter updates for packet classifi-
cation using TCAM,” in Proceedings of the 49th annual IEEE Global
Telecommunications Conference (GLOBECOM), 2006, pp. 1-5.

K. Qiu, J. Yuan, J. Zhao, X. Wang, S. Secci, and X. Fu, “FastRule:
efficient flow entry updates for TCAM-based openflow switches,” IEEE
Journal on Selected Areas in Communications (JSAC), vol. 37, no. 3,
pp. 484-498, 2019.

B. Zhao, R. Li, J. Zhao, and T. Wolf, “Efficient and consistent tcam
updates,” IEEE INFOCOM 2020-IEEE Conference on Computer Com-
munications, pp. 1241-1250, 2020.

[24]

[25]
[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Open Networking Foundation, “Openflow switch specification version
1.0.0,” Tech. Rep., 2009.

——, “Openflow switch specification version 1.5.1,” Tech. Rep., 2015.
P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87-95, 2014.

D. E. Taylor and J. S. Turner, “Classbench: A packet classification
benchmark,” IEEE/ACM transactions on networking, vol. 15, no. 3, pp.
499-511, 2007.

J. Matous$ek, G. Antichi, A. Lucansky, A. W. Moore, and J. Kofenek,
“Classbench-ng: Recasting classbench after a decade of network evolu-
tion,” in 2017 ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS), 2017, pp. 204-216.

X. Wen, B. Yang, Y. Chen, L. E. Li, K. Bu, P. Zheng, Y. Yang, and
C. Hu, “RuleTris: Minimizing rule update latency for TCAM-based
SDN switches,” in Proceedings of the 36th International Conference on
Distributed Computing Systems (ICDCS). 1EEE, 2016, pp. 179-188.
M. Matsumoto and T. Nishimura, “Mersenne twister: A
623-dimensionally equidistributed uniform pseudo-random number
generator,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1, p. 3-30,
jan 1998. [Online]. Available: https://doi.org/10.1145/272991.272995
P. Gupta and N. Mckeown, “Classifying packets with hierarchical
intelligent cuttings,” Micro IEEE, vol. 20, no. 1, pp. 34-41, 2000.

S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet classification
using multidimensional cutting,” ACM SIGCOMM Computer Commu-
nication Review, vol. 33, no. 4, 2003.

H. Song and J. Turner, “Toward advocacy-free evaluation of packet
classification algorithms,” IEEE Transactions on Computers, vol. 60,
no. 5, pp. 723-733, 2011.

D. Shah and P. Gupta, “Fast incremental updates on ternary-cams for
routing lookups and packet classification,” 09 2000.

M. Wang, S. Deering, T. Hain, and L. Dunn, “Non-random generator
for ipv6 tables,” 09 2004, pp. 35— 40.

K. Zheng and B. Liu, “V6gene: a scalable ipv6 prefix generator for
route lookup algorithm benchmark,” in 20th International Conference
on Advanced Information Networking and Applications - Volume 1
(AINA’06), vol. 1, 2006, pp. 6 pp.—152.

Q. Sun, X. Huang, W. Yang, X. Zhou, Y. Ma, and C. Wang, “Class-
benchv6: An ipv6 packet classification benchmark,” in GLOBECOM
2009 - 2009 IEEE Global Telecommunications Conference, 2009, pp.
1-6.

T. Ganegedara, W. Jiang, and V. Prasanna, “Frug: A benchmark for
packet forwarding in future networks,” 12 2010, pp. 231-238.

https://www.researchgate.net/publication/371174201

