
OBMA: Minimizing Bitmap Data Structure with
Fast and Uninterrupted Update Processing

Chuwen Zhang∗, Yong Feng∗, Haoyu Song†, Ying Wan∗, Wenquan Xu∗,
Yilun Wang∗, Huichen Dai∗, Yang Li∗, Bin Liu∗

∗Department of Computer Science and Technology, Tsinghua University
‡Futurewei Technologies, Santa Clara

Abstract—Software-based IP route lookup is one of the key
components in Software Defined Networks. To address challenges
on density, power and cost, Commodity CPU is preferred over
other platforms to run lookup algorithms. As network functions
become richer and more dynamic, route updates are more
frequent. Unfortunately, previous works put less effort on fast
incremental updates. On the other hand, The cache in CPU
could be a performance limiter due to its small size, which
requires algorithm designers to give high priority on storage
efficiency in addition to time complexity. In this paper, we
propose a new route lookup algorithm, OBMA, which improves
update performance and storage efficiency while maintaining
high lookup speed. The extensive experiments over real-word
traces show that OBMA reduces the memory footprint to just
4.52 bytes/prefix, supports update speed up to 7.2 M/s which
is 12.5 times faster than the state-of-the-art algorithm Poptrie.
Besides, OBMA achieves up to 195.87 Mpps lookup speed with
a single thread. Tests on comprehensive performance of lookup
and update show that OBMA can sustain high lookup speed with
update speed increasing.

I. INTRODUCTION

In Software Defined Networks (SDN), more and more

network functions adopt software-based approaches in order

to provide an open programming environment and gain update

flexibility. Route lookup is a key function in routers. CPU-

based lookup solutions can speed up the time-to-market,

extend product life cycle, and reduce system cost. Today, back-

bone route tables maintain an annual growth rate of around

15%. Meanwhile, the update rate grows steadily and shows

a strong burst characteristic. While software-based algorithms

are attractive, they face some new challenges.

First, commodity CPUs, especially those embedded low

power CPUs, are equipped with a small cache which can be a

performance limiter. Therefore, we should give high priority

to the algorithm’s storage efficiency because of the small

cache with CPUs. Second, measurements show that the route

updates exhibit a strong burst characteristic. Paper [1] suggests

a rising trend of update burst in Internet, reaching up to

hundreds of kilo-prefixes extremely. If a router fails to process

several concurrently arriving update bursts quickly, more time

spent on update processing can deteriorate the slow BGP

convergence, and the update prefixes waiting in the queue can

increase the packet loss rate. Particularly, paper [1] finds that

routers often see bursts of withdrawals and 84% of the bursts

include prefixes announced by “popular” ASes, which means

poor performance on update will influence customers’ Internet

experience significantly and cause huge potential economic

losses.
Most of the existing CPU-based software lookup algo-

rithms are derived from the binary trie data structure [2]–

[4]. Theoretically, binary trie [2] allows the fastest update

speed, but its memory efficiency and lookup performance are

poor. While the common challenges such as boosting lookup

speed and reducing memory cost have been well studied in

recent literatures [3]–[6], optimizing bursty updates is largely

unattended. In addition, CPU-based software algorithms can

adopt multi-threading technology to accelerate lookup speed,

but memory access operations which can’t be parallelized will

become the bottleneck and limit the improvement on lookup.

Therefore, while keeping small storage and high lookup speed,

we should pay more attention to the update processing.
In this paper, we propose Overlay BitMap Algorithm

(OBMA) to address this issue. Different from Lulea [5],

OBMA builds an overlay bitmap structure which keeps the

prefix trie unaltered and ensures the correct Longest Prefix

Match (LPM) processing. This change brings us the following

benefits: 1) better support for incremental updates; 2) minimiz-

ing the number of “1” in the bitmaps which allows a better

compression ratio and improves the storage efficiency. With

further optimizations on the update structure, OBMA achieves

a fast and uninterrupted update processing, which means it can

adapt to the bursty updates in Internet. Specifically, we make

the following contributions in this paper:

1) We propose OBMA which minimizes the bitmap structure

by canceling the redundant bit “1” and presents high

storage efficiency;

2) We design an adaptive bitmap segmentation algorithm

which partitions the whole bitmap data structure into

groups based on the update frequency. This enables

updates on a fine-grained group and thus reduces the

network state convergence time;

3) We conduct extensive experiments to evaluate OBMA’s

performance. Experimental results on newest real-world

data sets show that OBMA reduces the memory footprint

to just 4.52 bytes/prefix, achieves up to 195.87 Mpps

lookup speed on single-threading, and supports up to 7.20

M/s update speed. Tests on comprehensive performance

of lookup and update show OBMA can keep high lookup

speed over a wide range of update speeds and achieve the

highest lookup speed after update speed over 0.1 M/s.

978-1-5386-2542-2/18/$31.00 © 2018 IEEE

Authorized licensed use limited to: Tsinghua University. Downloaded on January 04,2022 at 14:23:35 UTC from IEEE Xplore. Restrictions apply.

The rest of the paper is organized as follows. Section

II details the overlay bitmap-based algorithm and its data

structure. Section III describes the optimizations on update

processing. Section IV conducts experiments to evaluate the

performance of OBMA. Section V surveys the related work.

Finally, Section VI concludes our work.

II. MINIMIZING BITMAP DATA STRUCTURE

In this section, we first describe OBMA. Then we elaborate

its software implementation by a [18-6-8] three-layer example.

We reuse some terms in Lulea [5] and redefine some as needed.

A. Minimizing the number of “1”s in the overlay bitmap

Similar to Lulea, the construction of the lookup structure

of OBMA consists of three steps: 1) Construct a prefix

trie from the original routing table; 2) Build bitmaps and

the corresponding lookup tables based on the prefix trie; 3)

Generate bitmap code-words. OBMA’s major difference from

Lulea lies in step 2, in which Lulea uses leaf pushing on the

prefix trie to build bitmaps, while OBMA uses level traversal

to build Forwarding Port Arrays (FPA) and overlay bitmaps.

We use the example routing table in Figure 1 to show the two

bitmap generation approaches. The corresponding prefix trie

in Figure 1 is cut on level 3 and levels 0 to 3 are grouped into

layer 1. The intermediate nodes on the cut level are named

pointer nodes which will store pointers to the chunks in the

next layer.

The process of level traversal is shown in the right of

Figure 2. Each prefix covers a range of elements in an FPA.

That is, every element in the range inherits the same output

port information of the prefix. In the right of Figure 2, node P2

on level 1 covers range [0, 3], while its child node P1 covers

range [2, 3]. To conduct LPM, the nodes within the range of P1

(i.e., the 2nd and 3rd elements of the FPA on level 2) should

record the output port information of P1. While building the

FPAs using level traversal, shorter prefixes are accessed earlier

and long prefixes automatically cover the range of short ones.

Hence, level traversal naturally guarantees LPM.

Although FPA can replace prefix trie for fast route lookups,

its storage is still large due to horizontal bit redundancy.

(i.e., consecutive elements may store the same output port

information). To eliminate such redundancy, we compress the

bitmaps and convert each FPA into an overlay bitmap plus

a corresponding lookup table. We define a segment as the

maximum range in which all elements are identical. The bit

corresponding to the head element of each segment is set to

1 and the others 0. The lookup table only stores the head

elements of each segment in order of appearance. Therefore,

The n-th “1” in the bitmap corresponds to the n-th entry of the

lookup table. Given a destination address, the lookup process

first locates a bit in a bitmap, then counts the number of “1”s

up to this bit position, and finally gets the next port in a lookup

table using the number as index.

In contrast, Lulea generates bitmaps in three steps as shown

in the left of Figure 2: 1) Modify the prefix trie to a complete

tree via leaf pushing and only leaf nodes and pointer nodes

Prefix Next-hop

P1

P3

Level 0

Level 2

Trie

*/0 P1

P2

N1

P1

Level 1

Level 3
Cut level

0*/1 P2

01*/2 P1

1110*/4 P3

FIB

Root node

Leaf nodeIntermediate
port node

Jump nodeRoot node

Leaf nodeIntermediatee
port node

Jump node

Fig. 1: Route table and prefix trie

P1

P2

N1

P1

P1 P1 P1 P1 P1 P1 P1 P1

P2 P2 P1 P1 P1 P1 P1 N1

P2 P2 P2 P2 P1 P1 P1 P1

1 0 1 0 0 0 0 1

P2 P2 P1 P1 P1 P1 P1 P1

P2 P1 N1

FPA
on level 0

FPA
on level 1

FPA
on level 2

FPA
on level 3

Overlay
bitmap

Lookup
table

Covered by
One to one
correspondence

Covered by
One to one
correspondence

P2 P1

N1P1

P1

1 0 1 0 1 0 1 1

P2 P1 P1 P1 N1

Lulea bitmap

Lookup table P1 P1 P1 N

One to one
correspondence

Original leaf node

Jump node

One to one
correspondence

Original leaf node

Jump node

New leaf node
from leaf pushing

Redundant entries

Lulea bitmap generation process Overlay bitmap generation process

Fig. 2: Overlay bitmap generation process

contain port information; 2) Traverse all leaf nodes and pointer

nodes from left to right. When visiting a node, project the node

to the cut level. This step generates an equivalent FPA; 3) Set

the bits corresponding to the left nodes of each projection

range to “1” and others to “0”. Meanwhile, store the port

information of leaf nodes or the pointers of pointer nodes into

the corresponding lookup table. Clearly, horizontal redundancy

exists in Lulea bitmaps as shown in Figure 2. Overlay bitmap

can eliminate such redundancy, so the number of “1”s is fewer,

and we can indeed prove that overlay bitmap contains the

minimum number of “1”s among all trie-based algorithms

under a given bitmap.The proof is omitted due to space.

B. Detailed implementation of overlay bitmap

Compared with a Lulea bitmap, an overlay bitmap is not

only storage-efficient but also easy to update. The reasons

are as follows: 1) Level traversal merges the adjacent FPA

elements with the same port into one element, leading to fewer

“1”s in overlay bitmaps and smaller table storage cost; 2)

Lulea modifies the prefix trie via leaf pushing to ensure LPM,

but OBMA keeps the prefix trie structure unchanged. It is

convenient for updates. 2) Lulea uses leaf pushing to ensure

LPM, but leaf pushing changes the original structure of the

prefix trie which complicates trie updates. An important fea-

ture of OBMA is to keep the prefix trie structure unchanged.

So, when an update comes, the prefix trie modification and

the bitmap reconstruction are easier.

OBMA uses a [18-6-8] partition to split the 32-bit IP address

space into three layers. To improve the lookup speed, we adopt

the direct pointing technology as in [3]. OBMA maintains one

FPA on level 18, named Direct Pointing Array (DPA), which

takes 512KB (i.e., 218×2B) storage. Lookup process uses the

first 18 bits, the middle 6 bits, and the last 8 bits of an IP

address to access Layer 1, Layer 2, and Layer 3, respectively.

For convenience, we define some terms in the lookup

structure of OBMA as follows:

Chunk: An 6-level (8-level) subtree in layer 2 (layer 3). A

chuck can be classified as a sparse chunk or a bitmap chunk

based on the number of prefixes in it.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 04,2022 at 14:23:35 UTC from IEEE Xplore. Restrictions apply.

Step 1

ChunkList

IP Address
18

18 (Layer 1 DPA)
group2 cluster2 bit2

2 31

6 (Layer 2 Chunk)
bits

8 (Layer 3 Chunk)

0100 0011 1000 1001 10 0 01 100 01011100

2

4bits

256

bitmap before
8 8Code Word

structure

IndexTable

0

9876

177

69158

17

4 Code Words

Lookup Entries

DPA, 256K Lookup
Entries

type port
15

Lookup Entry
structure

0x43898C5C

10111000 11111111 P2

m
ax

 =
 K

prefix lookup entrymask

default: P3

Step 6

Step 5

Step 8: 2 + 3 = 5

Step 9

[10001100] >>
(8-bit2-1) =17

 Step 11: Output P4

0

1 177
Step 2

Bitmap 2
Group point 0
Group point 1

Bitmap Chunk structureStep 3

Step 4

Sparse Chunk structure

Sparce

01010000 11110000 P40

3
Step 10

9

Step 7

DPA index

type group width

type entry number

10100001 0

00001100 10
10001011 6
10001100 3

P40

P3
P1

N3(5574)
P2

N4(9876)

0
0
1
0
2Step 9

Group structure

Fig. 3: OBMA lookup structure and process

Group: A w-level subtree, where w is in the range of 0-3

(0-5) in layer 2 (layer 3). Group is the basic unit for updates

and lookups. A chunk is composed of 23−w (25−w) groups in

layer 2 (layer 3).

Cluster: A 3-level subtree, the minimum unit for bitmaps.

Next, we illustrate the lookup structure of chunk, group,

and cluster. We start from bitmap chunk and sparse chunk. As

shown in Figure 3, a bitmap chunk consists of the following

fields: 1) type, indicating the chunk type: either a bitmap

chunk or a sparse chunk; 2) group width, indicating how

many bits in the middle of the IP address are group index,

and giving the number of groups contained in the chunk i.e.

2group width; 3) group list, containing a pointer to each group.

When looking up in a bitmap chunk, OBMA needs to split

the 6- or 8-bit IP address into (group index, cluster index,

bit index). Since the height of the cluster is 3, the lowest

three bits are used as bit index. The values of the other two

parts are determined by the group width field. For example,

in Figure 3, the group width equals 1, which means a [1-2-3]

partition for layer two. Therefore, group index = (0)2 = 0,

cluster index = (01)2 = 1, and bit index = (100)2 = 4.

The group structure consists of several code-words and

lookup entries as shown in Figure 3. The width of each lookup

entry is 2 bytes, including a type field (1 bits) and a port
field (15 bits). When type is 1, the port field stores an index

of chunk list; when type is 0, the port field stores the port

information. The size of each code-word is also 2 bytes: one

byte stores the cluster bitmap and the other byte (i.e., the

before field) records the cumulative number of “1”s ahead of

this cluster. As an example in Figure 3, the before field of

the third code-word is 6, which means the number of “1”s

in the bitmaps of the first and the second code-word is 6.

Therefore, we can get the number of “1”s in previous clusters

efficiently. To calculate the number of “1”s ahead of a given

location in a cluster, we use a pre-calculated Index Table to

store the number of “1”s for 28 = 256 different bit patterns.

For example, the 20th record of the Index Table stores the

number of “1”s of (00010100)2, which is 2. To calculate the

number of “1”s in the first five bits of a bitmap (10100001),

we first shift the bitmap to right by 8 − 5 = 3 bits to obtain

a new value (00010100)2 = 20, and then retrieve the 20th

record of the Index Table to get the result of 2.

When the number of prefixes in a chunk is less than a

predefined value K (e.g., K = 4), we use the sparse chunk

structure to save storage. Each sparse entry consists of three

parts: a prefix, a mask, and a lookup entry. For prefix matching,

the destination address executes logic AND operation with the

mask and compares the results with the prefix.

Algorithm 1 describes the OBMA lookup step by step. We

combine the example in Figure 3 to illustrate the process.

Given an IP address 0x43898C5C, OBMA uses its first 18

bits to visit the DPA (step 1) and gets a chunk list index.

Next, OBMA locates the bitmap chunk in layer 2 in step

2 and 3. According to the group width field, OBMA splits

the middle section of the IP address, visits the corresponding

group structure, and gets the lookup entry in step 4-8. Since

the entry is a pointer, OBMA keeps searching and locates

the sparse chunk in layer 3 in step 9 and 10. Finally, after

searching in a sparse chunk, the next port P4 is returned.

Algorithm 1 Lookup Algorithm

Input: Chunklist, DPA, IP .
Output: port.
1: entry ← DPA[IP [31 : 14]]
2: if entry stores next port information then
3: return entry.port

4: if ChunkList[cur].type is BITMAP then
5: width ← ChunkList[cur].groupwidth
6: Get group2, cluster2, bit2 from IP [13 : 8]
7: groupbase ← ChunkList[cur].grouplist[group2]
8: codeword ← groupbase[cluster2]
9: lookup ← groupbase+ 1 << (3− width)

10: ix ← codeword.bits >> (7− bit2)
11: pix ← codeword.before+ IndexTable[ix]− 1
12: entry ← lookup[pix]
13: if entry.type stores next port information then
14: return entry.port
15: else
16: cur ← entry.pointer

17: else
18: search the special entries (0 → K)

19: /*search deep to layer 3 chunk just as layer 2 chunk*/

Authorized licensed use limited to: Tsinghua University. Downloaded on January 04,2022 at 14:23:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Peak update statistics

for Equinix, Oregon and ISC

in April, 2017

Fig. 5: Length distribution of

updated prefixes on April 1st,

2017

III. FAST UPDATE PROCESSING

First, we examine the bursty update phenomenon through

mining real-word update traces. Then, based on the update

features, we propose an adaptive group partition approach to

narrow the scope of level traversal as well as reduce the whole

memory storage, and specific optimization for insertions or

modifications to non-pointer nodes at the bottom of each layer.

A. A closer look at bursty updates

This part reports the data mining results on the update traces

of three route tables: Oregon, Equinix, and ISC (downloaded

from [7]–[9], from April 1 to April 30, 2017). The updates

exhibit the characteristics of strong burst and regular locality.

Figure 4 shows the peak update statistics for the three tables:

Equinix, Oregon, and ISC. We can see the updates are bursty.

The rates of the top two bursts for Equinix are 181.0K/s and

166.1 K/s, respectively. The peak update rates are 66.5 K/s

and 59.8 K/s for ISC and Oregon. We observe that the bursty

updates exist throughout the whole period of time.

We count two kinds of update locality: locality on prefixes

(in Figure 5) and on chunks. We find: 1) The update on prefix

length 24 accounts for about 50% of the total updates. The top

three prefix lengths with the highest update frequency are 24,

22, and 23, accounting for more than 70% of the total updates;

2) The update ratios on prefix length ≤ 18 for Equinix, ISC,

and Oregon are all around 6%; 3) The update ratios on chunks

show strong locality: 20% of chunks receive over 80% of

updates.

B. Adaptive Bitmap Segmentation

The aforementioned results show the update locality: 20%

of chunks receive over 80% of updates. This inspires us to

develop an adaptive bitmap segmentation algorithm. Based on

the update frequency, each chunk can be partitioned into a

different number of equal-sized groups. Group partitioning

is flexible: the smaller the group is, the fewer bytes the

reconstruction needs and the faster the update is, at the cost

of more storage of group pointers. As a result, the frequently

updated chunks end up with having more small-size groups

while the infrequently updated chunks can contain as few as

just one group.

As the value of group width is between 0 to N , where N is

3 in layer 2 and 5 in layer 3, we can divide the group size into

up to N+1 levels according to the update frequency. Let level

P1

P2

P1

N1

P1 P1 P1 P1 P1 P1 P1 P1

P2 P2 P3 P1 P1 P1 P1 N1

P2 P2 P2 P2 P1 P1 P1 P1

P2 P2 P1 P1 P1 P1 P1 P1

Level traverse

Rebuild

P3

Insert P3

011 0 1 00 0 1

Specific Optimization

Rebuild

P3!=P1

 Original group structure
Insert an entry

 New group structure

before:0
0 P2
0 P3
0 P1
1 N1

011 0 0 00 0 1 before:0
0 P2
0 P1
1 N1

Fig. 6: Specific Optimization v.s. level traverse

i cover update frequency range [0, fmax
i) and fmax

i+1 = 2fi
max.

Here we apply the idea of dynamic table adjustment based on

load factor [10] in which the table size is doubled whenever

the load factor reaches 1 and the table size is reduced to half

whenever the load factor drops below 1/2. This algorithm is

composed of two processes: online addition and half-decay.

Online addition process: We maintain a counter for each

chunk and let it increase by one when receiving an updated

prefix. If the counter value of a chunk reaches the current

level’s upper limit of frequency fmax
i , this update will double

the group number and rebuild the entire chunk.

Half-decay process: We define one day as a half-life cycle.

When the network traffic is relatively low, we start the half-

decay process: traverse all chunks and examine the chunk

counters. If a counter value is smaller than 1/2fmax
i (i.e., half

of its current upper limit), we reduce the group number and

the counter value to a half and rebuild the entire chunk.

C. Specific Optimization

Level traversal can be expensive in terms of CPU cycles.

If we can skip it, the update performance will be improved.

Specific optimization is based on the fact that for the inserted

or modified prefixes, if the length is 24 and the corresponding

node in the prefix tree is not a pointer node, the reconstruction

of the group structure can be done on the old group structure

directly without needing to traverse the prefix trie. Our statistic

results show that 99.9% of updates with the prefix length of

24 meet the conditions of the specific optimization (i.e., nearly

half of the updates are suitable for the specific optimization

based on the distribution of prefix length in Figure 5). We use

the previous trie structure in Figure 6 as an example to illus-

trate the specific optimization. When dealing with an updated

prefix [010/3, P3], OBMA directly visits the group structure

and finds the two-bit bitmap “10” and the corresponding port

P1 in Figure 6. The bitmap “10” means that the node to be

modified and its right neighbor both point to P1. We can get

the left neighbor’s port P2 by visiting the previous entry of P1.

As port P3 does not equal left port P2 and right port P1, this

update will change the second bit 0 to 1 and add a new entry

of P3 ahead of P1. The new group structure is the same as that

from the level traversal but it is acquired in a more efficient

way. The actual situations can be more complex. We need to

consider both the local bitmaps and the cluster’s position. Due

to space limitations, we do not explain these in detail.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 04,2022 at 14:23:35 UTC from IEEE Xplore. Restrictions apply.

(a) Lookup Table Sizes (b) Memory size increase over the
last 10 years on ISC

Fig. 7: The performance on memory cost of the five schemes

Fig. 8: Comparison on update

execution speed for the five

algorithms

Fig. 9: Lookup speed com-

parison for the five algo-

rithms

IV. PEFFORMNACE EVALUATION

We evaluate OBMA’s performance on memory, lookup and

update using real-world Internet traces.

Platform: We conduct experiments on a Dell M4800 mobile

workstation with Intel CPU Core i7-4900MQ (4x 2.8 GHz

cores with each supporting 2 threads). The workstation is

equipped with 8 GB DDR3 (1.6 GHz) memory and runs 64-bit

Ubuntu-14.04-LTS OS.

Datasets: We download the route table history from three

routers (i.e., Oregon, Equinix, and ISC) since 2008 to 2017 [7],

[9] to evaluate the memory efficiency and the memory size

increase in section V-B. We use CAIDA traces [8] to test

the lookup speed in section V-C. We collect update packets

from RIPE Network Coordination Center [7] to test update

speed in section V-D. In this section, we compare OBMA

with two state-of-the-art works: SAIL [4] and Poptrie [3]. We

also compare with Lulea [5] and the basic binary trie [2]. Our

implementation chooses the partition mode [18-6-8] and uses

the adaptive group segmentation algorithm.

A. Memory Cost and Memory Size Increase

1) Memory Cost: We run the algorithms on three route

table snapshots: Oregon, Equinix, and ISC on April 1st,

2017 to get the lookup structure sizes for OBMA, Poptrie,

SAIL, Lulea, and binary trie. 697K, 657K, and 675K prefixes,

respectively. Figure 7(a) shows the lookup structure size

comparison for the five algorithms. We can see that OBMA

needs approximately equal storage with Lulea, which is a bit

higher than Poptrie, while SAIL’s size is comparable to the

binary trie. Considering the DPA level in Lulea is 16 (about

400 KB less than level 18), OBMA is more compact than

Lulea. OBMA can compress tables even smaller than Poptrie

by raising the adaptive grouping threshold but it will affect the

update performance significantly. The lookup structure sizes

for SAIL, Poptrie and OBMA on ISC are 18.95 MB, 2.65

MB and 2.91 MB, respectively. We use the metric of bytes

per prefix to calculate the storage efficiency(e.g., it requires

only 4.52 Bytes/prefix for the ISC table on April 1st, 2017),

and the result is that OBMA achieves a high storage efficiency.
2) Memory Size Increase: We run the algorithms on the ISC

tables for the past 10 years. The memory size increase trend

of the five algorithms is shown in Figure 7(b). We can see that

OBMA keeps a small storage space. We would like to point

Fig. 10: Lookup speed

change over the last 10 years

on Equinix tables

Fig. 11: The comprehensive

performance of lookup and

update on single-threading

out in particular that Poptrie needs extra memory including the

whole lookup data structure to handle updates. Hence OBMA

is still much better than Poptrie’s solution considering the

overall storage overhead.

B. Lookup performance

We run the algorithms on three route table snapshots,

Oregon, Equinix, and ISC on April 1st, 2017, to get the lookup

speeds, as shown in Figure 9. Although SAIL exhibits the

fastest speed on Equinix, it needs a large storage. Poptrie is

the highest on ISC and Oregon, but much slower on Equinix,

refecting its strong correlation with the specific structure of the

routing table. OBMA can achieve up to 195.87 Mpps lookup

speed for the Equinix table on April 1st, 2017, which means

it is enough to support small-packet line-speed forwarding for

a 100 Gb/s link.

We continue to run the algorithms on the route tables over

the last 10 years and collect the lookup speeds in Figure 10.

SAIL has the highest lookup speed, but its speed drop is also

the largest (e.g., about 140 Mpps from 2010 to 2017). SAIL,

Poptrie and OBMA all exhibit a decline trend, while Poptrie

fluctuates more intensely over the years. This implies all of the

three algorithm, especially Poptrie, are sensitive to the table

size and table structures.

C. Update Performance

We run experiments to measure the average update speed

and show the results in Figure 8. Just as expected, binary

trie has the fastest update speed which can be considered

as an upper bound. Lulea cannot handle incremental updates

efficiently. OBMA is significantly better than Poptrie and

Authorized licensed use limited to: Tsinghua University. Downloaded on January 04,2022 at 14:23:35 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Update performance of OBMA using different

optimization means

Storage (MB) Lookup (Mpps) Update (M/s)
Firm Group (0-3-3) 2.39 198.35 3.16
Firm Group (1-2-3) 2.95 195.83 4.56
Firm Group (2-1-3) 4.07 189.55 5.41
Firm Group (3-0-3) 6.16 185.04 5.77
Adaptive group

3.61 195.87
3.72

Adaptive group− 5.15

SAIL for all the three tables. For the Oregon table on April

1st, 2017, OBMA can sustain 7.19 M/s update speed while

Poptrie can only sustain 0.58 M/s update speed and SAIL

sustains 0.38 M/s.

We also do experiments on the update performance us-

ing different optimization means. Table I shows the update

performance of OBMA when using different optimization

means. As for firm grouping, more groups means faster update

performance but lower lookup performance and more storage

cost. E.g., adopting 8-group chunk (3-0-3) can achieve 5.77

M/s update speed in contrast to 3.16 M/s of 1-group chunk

(0-3-3), but the latter has advantages in lookup and storage.

The Adaptive bitmap segmentation and the specific optimiza-

tion can optimize the comprehensive performance on lookup,

update and storage. If we do not adopt specific optimization,

the update speed will drop by 28% to 3.72 M/s.

D. Comprehensive performance of lookup and update

The real routers should be able to deal with lookup and

update traces simultaneously, so we first run experiments

to figure out the comprehensive performance of lookup and

update on single-threading. Figure 11 shows the results of

Equinix. The lookup speed of SAIL begins at about 100 Mpps,

which is far below the pure lookup results, due to the large

memory footprint needed by update operations. The trends

of OBMA are more steady and horizontal, which cross with

Poptrie in the update speed interval of 100-150 K/s. As burst

update speed in Internet can exceed 150 K/s mentioned before,

we can claim that OBMA is more powerful than SAIL and

Poptrie when dealing with bursty updates.

V. RELATED WORK

For saving space, we skip the survey on hardware-based

solutions and focus on software-based lookup schemes. Basi-

cally, software-based schemes are divided into two categories:

bloom filter-based and trie-based [11]. Bloom filter cannot deal

with incremental element withdrawal, thus counting bloom

filter is introduced [12], [13]. However, counting bloom filter

suffers from the false negative as well as false positive issues.

Comparatively, trie-based algorithms are more practical, in-

cluding [3]–[6], [14]. Lulea [5] is a typical bitmap compression

algorithm which effectively reduces the memory footprint,

but the leaf-pushing changes the original trie structure which

complicates the update operation. Further, leaf-pushing brings

more redundant “1” bits than level traversal of OBMA. [6]

achieves fast lookups and rapid routing updates, but takes a

large storage space. LOOP [14] focuses on merging multiple

virtual route tables and partitions the bitmap into fixed equal-

sized groups to enable fast updates, but it does not adapt to

the burst updates. SAIL [4] can achieve fast lookup speed, but

it heavily relies on the traffic locality. Besides, SAIL occupies

a large storage space too. Poptrie [3] develops a multiway

method to accelerate lookup and adopts a pointer replacement

approach to implement fast updates. However, it costs a large

amount of memory space to reserve double lookup structures

and cannot still support burst updates.

VI. CONCLUSION

We propose OBMA to adapt to burst updates in Internet

and realizes fast and uninterrupted update processing, which

is important to accelerate the network state convergence and

improve network QoS. Meanwhile, OBMA is a CPU-based

route lookup solution that costs low memory footprint and

sustains high lookup speed. Because OBMA is derived from

prefix trie, it can be applied to IPv6 networks and multiple

virtual route tables in an NFV environment.

ACKNOWLEDGEMENT

This work is sponsored by Huawei Innovation Research

Program (HIRP), NSFC (61373143, 61432009).

REFERENCES

[1] T. Holterbach, S. Vissicchio, A. Dainotti, and L. Vanbever, “Swift:
Predictive fast reroute,” in Proc. of ACM SIGCOMM, 2017, pp. 460–473.

[2] K. Sklower, “A tree-based packet routing table for berkeley unix.” in
USENIX Winter, 1991, pp. 93–99.

[3] H. Asai and Y. Ohara, “Poptrie: A compressed trie with population
count for fast and scalable software ip routing table lookup,” in ACM
SIGCOMM Computer Communication Review, vol. 45, no. 4, 2015, pp.
57–70.

[4] T. Yang, G. Xie, Y. Li, Q. Fu, A. X. Liu, Q. Li, and L. Mathy, “Guar-
antee ip lookup performance with fib explosion,” in ACM SIGCOMM
Computer Communication Review, vol. 44, no. 4, 2014, pp. 39–50.

[5] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small forwarding
tables for fast routing lookups,” in Proc. of ACM SIGCOMM, vol. 27,
no. 4, 1997.

[6] T. Yang, Z. Mi, R. Duan, X. Guo, J. Lu, S. Zhang, X. Sun, and
B. Liu, “An ultra-fast universal incremental update algorithm for trie-
based routing lookup,” in Proc. of IEEE ICNP, 2012, pp. 1–10.

[7] Ripe ncc:ripe network coordination centre. [Online]. Available:
http://www.ripe.net/

[8] Caida anonymized internet trace. [Online]. Available:
http://www.caida.org/data/monitors/passive-equinix-sanjose.xml

[9] University of oregon route views archive project. [Online]. Available:
http://archive.routeviews.org/

[10] T. H. Cormen, Introduction to algorithms. MIT press, 2009.
[11] M. A. Ruiz-Sanchez, E. W. Biersack, and W. Dabbous, “Survey and

taxonomy of ip address lookup algorithms,” IEEE network, vol. 15,
no. 2, pp. 8–23, 2001.

[12] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest prefix
matching using bloom filters,” in Proc. of ACM SIGCOMM, 2003, pp.
201–212.

[13] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast hash table
lookup using extended bloom filter: an aid to network processing,” ACM
SIGCOMM Computer Communication Review, vol. 35, no. 4, pp. 181–
192, 2005.

[14] Z. Mi, T. Yang, J. Lu, H. Wu, Y. Wang, T. Pan, H. Song, and B. Liu,
“Loop: Layer-based overlay and optimized polymerization for multiple
virtual tables,” in Proc. of IEEE ICNP, 2013, pp. 1–10.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 04,2022 at 14:23:35 UTC from IEEE Xplore. Restrictions apply.

