
IEEE/ACM TRANSACTIONS ON NETWORKING 1

OBMA: Scalable Route Lookups with Fast and
Zero-interrupt Updates

Chuwen Zhang, Yong Feng, Haoyu Song, Senior Member, IEEE, Ying Wan, Wenquan Xu, and Bin Liu, Senior
Member, IEEE

Abstract—Software-based IP route lookup is a key component
for packet forwarding in Software Defined Networks. Running
lookup algorithms on commodity CPU is flexible and scalable,
which shows advantages on cost and power consumption over the
hardware-based forwarding engines. However, dynamic network
functions and services make route updates more frequent than
ever. Existing algorithms often fall short of the incremental up-
date requirements. In this paper, we propose the Overlay BitMap
Algorithm (OBMA) family, which supports extraordinary update
performance while maintaining their lookup speed and storage
efficiency the highest in class. Starting from the basic OBMA B,
we develop two variations with different tradeoffs for different
application scenarios. OBMA L supports faster lookups than
OBMA B at a small cost of update speed. OBMA S achieves
better storage efficiency than OBMA B at a small cost of lookup
throughput. We run our algorithms on commodity CPU and
evaluate them with real-world route tables and traces. The
experiments show that OBMA family realizes the lowest memory
footprint, over 200 Mpps lookup throughput, and highest update
speed. Specifically, OBMA S can reduce the memory footprint
to 3.98 bytes/prefix, saving 25.33% over the state-of-the-art
Poptrie; OBMA L can support 252.02 Mpps lookup throughput
with a single thread, significantly outperforming the state-of-the-
art Poptrie and SAIL, and its lookup throughput exceeds 600
Mpps with multiple parallel threads in a single CPU; OBMA B
supports updates at a rate of 14.58M updates/s, which is 15
times faster than Poptrie. Our tests also show that the update
process hardly interfere with the lookup process for the OBMA
family, and zero-interrupt to lookups with multiple threads can
be achieved.

Index Terms—IP lookup, Bitmap, Parallel Techniques.

I. INTRODUCTION

In Software Defined Networks (SDN), more and more
network functions adopt software-based approaches for better
flexibility and scalability in an open programming environ-
ment. As a key function in routers, route lookup is no
exception. A software-based route lookup solution is expected
to be able to speed up time-to-market, extend product life
cycle, and reduce system cost. As of today, the size of the
backbone route tables grows at a rate of around 15% annually.
Meanwhile, the table update rate also grows and the updates
tend to be more bursty. Paper [1] uncovers a rising trend
of update bursts which mainly consist of withdrawals from

C. Zhang is a Ph.D. Candidate in the Department of Computer
Science, Tsinghua University. (email: chuwen1992@gmails.com, zhang-
cw15@mails.tsinghua.edu.cn)

Y. Feng, Y. Wan, W. Xu,, and B. Liu are with the Department of
Computer Science and Technology, Tsinghua University, Beijing 100084,
China. (Corresponding Author: Bin Liu. email: liub@mail.tsinghua.edu.cn)

H. Song is with Futurewei Technologies, USA

remote outages on Internet. In the extreme, a burst involves
hundred-thousands of prefixes.

The software-based algorithms must address some new
challenges.

First, network device vendors want to have the similar
compact-sized line-card (the thickness) as the hardware-based
solutions (e.g., using Network Processors), which enforces
strict constraints on the line-card form factor and power bud-
get. Therefore, power-hungry components, such as Graphics
Processing Unit (GPU) or integrated PC server board with
colossal heat sink, are not favored. Instead, commodity CPUs,
especially those embedded low-power CPUs, are preferred.
However, such CPUs are usually equipped with a small cache
which can potentially be a performance limiter. Hence, while
optimizing the algorithm’s time complexity, we need to give
high priority to improve the algorithm’s storage efficiency as
well, which is measured in bytes per prefix.

Second, we need to counter the impact of update bursts. A
router that fails to handle update bursts fast enough faces two
negative consequences: 1) The long time spent on updating
slows down the route convergence and prolongs the network
downtime; 2) The queued updates delay the valid alternative
paths to take effect in the Forwarding Information Base (FIB)
and create transient forwarding black holes. Paper [1] reports
that routers often experience bursts of route withdrawals and
84% of the bursts include prefixes announced by “popular”
ASes. Poor update performance influences customers’ Internet
experience and causes significant economic loss.

Existing software-based route lookup algorithms are pre-
dominately derived from the binary trie data structure [2, 3, 4].
A native trie [3] allows fast updates, but its memory efficiency
and lookup performance are mediocre. The past efforts focused
on boosting lookup speed and reducing memory footprint of a
trie at the cost of complicating the update process [2, 4, 5, 6].
While we can adopt the multi-threading technology to further
accelerate lookups, the update process needs to block the
lookup threads when modifying the lookup data structure,
which can severely impede lookups. Therefore, we need to
pay equal attention on the update process in order to retain the
theoretical performance gain through lookup optimizations.

In this paper, we propose the Overlay BitMap Algorithm
(OBMA) family to address the above mentioned issues. The
basic OBMA (OBMA B) is small-cache friendly and bursty-
update tolerable. In contrast to traditional bitmap-based algo-
rithms such as Lulea [5] (which is usually considered the most
compact bit-map based lookup algorithm), OBMA B adopts
an overlay bitmap to keep the prefix trie unaltered and ensure

IEEE/ACM TRANSACTIONS ON NETWORKING 2

the correctness of Longest Prefix Match (LPM). The proposed
overlay bitmap is more compact and enables fast incremental
updates. By trading off some update throughput, OBMA L
boosts the lookup throughput. OBMA S further compresses
the data structure and improves the memory efficiency, which
make it suitable for application scenarios with memory con-
straints.

Specifically, we make the following major contributions:
1) We propose OBMA B which realizes high performance

on storage, lookup and update. It uses an overlay
bitmap to eliminate the redundant bit “1” in the bitmap
horizontally. The resulting compressed lookup structure
improves the lookup speed by exploiting the CPU cache.
It uses the adaptive grouping and 24-level optimization
to reduce the update execution time. We show how it
can support updates with zero-interrupt to lookups when
using multiple threads.

2) We have further developed two extended variant al-
gorithms, OBMA B and OBMA S, for applications
adapted to ultra-high speed lookup and ultra-low cache
memory requirements, respectively.

3) We conduct extensive experiments to evaluate the per-
formance of the OBMA family. Experimental results on
the real-world data sets [7, 8, 9] show that OBMA B
and OBMA S can reduce the memory footprint to 4.85
and 3.98 bytes/prefix, respectively. OBMA B supports
updates at a rate of 14.58M updates/s. OBMA B and
OBMA S can support 219.56 Mpps and 252.02 Mpps
lookup throughput with a single thread. Their lookup
throughput exceeds 600 Mpps with multiple parallel
threads in a single CPU. Our tests also show that the up-
date process does not interfere with the lookup process
for the OBMA family of algorithms, and zero-interrupt
to lookups with multiple threads can be achieved.

The rest of the paper is organized as follows. Section II
surveys the related work. Section III details the data structure
and lookup process of the basic OBMA algorithm(OBMA B).
Section IV describes OBMA L, the variation of OBMA B op-
timized for lookup throughput. Section V describes OBMA S,
the variation of OBMA B optimized for storage. Section VI
examines the bursty update phenomenon through real-world
update traces and proposes optimizations to reduce the up-
date execution time and realize zero-interrupt for updates.
Section VII evaluates the performance of the OBMA family
by comparing with the state-of-the-art algorithms. Finally,
Section VIII concludes the paper.

II. RELATED WORK

The problem of route lookup is well researched with a large
body of literature. Due to the space limit, we only discuss the
software-based schemes which are more closely related to our
work.

Basically, the software-based schemes can be divided into
two categories: Bloom Filter-based and trie-based [10]. Since
Bloom Filter cannot handle element withdrawal, Counting
Bloom Filter is introduced [11][12]. However, Counting
Bloom Filter suffers from false negative in addition to false
positive.

Trie-based algorithms are immune to these issues and are
more widely used in practice. While such algorithms can be
implemented in both CPU and GPU, CPU-based implementa-
tions are more appreciated by the community, because apart
from generality, GPU is inferior to CPU in terms of power
consumption and lookup latency due to packet batch [13][14],
which offsets GPU’s lookup performance gain from massively
parallel processing. Incremental updates in GPU is also more
difficult.

. Lulea [5] is considered to be the most representative
bitmap compression algorithm to date, which effectively re-
duces the memory footprint. However, by carefully exploring
its data structure, we find that Lulea’s leaf-pushing technique
changes the original trie structure and complicates the update
operation. Moreover, leaf-pushing brings more redundant “1”
bits in the data structure. Differently, OBMA avoids leaf-
pushing and keeps the original trie structure to support fast
incremental updates.

The state-of-art software-based algorithms are all trie-
based [2][4][6][15]. BS [6] achieves fast lookups and up-
dates, but it takes a large storage space. LOOP [15] applies
the overlay bitmap to merge multiple virtual route tables.
However, it partitions the bitmap into equal-sized groups,
which does not adapt to the bursty updates. The fast lookup
performance of SAIL [4] relies on the traffic locality. and
requires a storage larger than the basic binary trie. Pop-
trie [2] develops a multiway method to accelerate lookups
and adopts a pointer replacement approach to support fast
updates. However, Poptrie has a long update delay which can
cause packet drops while dealing with bursty updates. Poptrie
also needs to reserve a large amount of memory to hold the
updated structure. The OBMA family achieves better memory
efficiency, and higher lookup and update speeds than these
algorithms.

III. BASIC OVERLAY BITMAP DATA STRUCTURE

In this section, we first describe the basic overlay bitmap.
Then we elaborate the software implementations of OBMA B
and OBMA S through a [18-6-8] three-layer trie. For the
convenience of discussion, we reuse some terms in Lulea [5].

A. Reduce the Number of 1s in Overlay Bitmap

Similar to Lulea, OBMA takes three steps to construct the
lookup data structure: 1) Build a prefix trie from the original
routing table; 2) Build bitmaps and the corresponding lookup
tables based on the prefix trie; 3) Generate bitmap code words.
OBMA differs from Lulea mainly in step 2, in which Lulea
uses leaf-pushing to build bitmaps, while OBMA uses level-
traversal to build Forwarding Port Arrays (FPA) and overlay
bitmaps. We use the routing table example in Figure 1 to
illustrate the difference of these two approaches. As shown
in the figure, the corresponding prefix trie is cut at level 3.
The nodes from level 0 to 3 are grouped into layer 1. The
non-leaf nodes on the cut level (e.g., the blue node N1) are
named pointer nodes which store pointers to the chunks in the
next layer.

IEEE/ACM TRANSACTIONS ON NETWORKING 3

Prefix Next-hop

P1

P3

Level 0

Level 2

Trie

*/0 P1 P2

N1

P1

Level 1

Level 3

Cut level

0*/1 P2

01*/2 P1

1101*/4 P3

FIB Root node

Leaf node
Intermediate

port node

Jump node

Fig. 1. Route table and prefix trie

P1 P1 P1 P1 P1 P1 P1 P1

P2 P2 P1 P1 P1 P1 N1 P1

P2 P2 P2 P2 P1 P1 P1 P1

1 0 1 0 0 0 1 1

P2 P2 P1 P1 P1 P1 P1 P1

P2 P1 N1

FPA

on level 0

FPA

on level 1

FPA

on level 2

FPA

on level 3

Overlay

bitmap

Lookup

table
P1

Covered by

One to one map

Fig. 2. Overlay bitmap generation process

P2 P1

N1 P1

P1

1 0 1 0 1 0 1 1

P2 P1 P1 N1 P1

Lulea bitmap

Lookup table

One to one
correspondence

Original leaf node

Jump node

New leaf node
from leaf pushing

Redundant entries

Fig. 3. Lulea bitmap generation process

The process of level traversal is shown in Figure 2. Each
prefix covers a range of elements in an FPA so every element
in the range inherits the same output port information of
the prefix. For example, in Figure 2, node P2 on level 1
covers range [0, 3], and its child node P1 covers range [2,
3]. To support LPM, the nodes within the range of P1 (i.e.,
the range [2, 3] of the FPA at level 2) should record the
output port information of P1. While building the FPAs using
level traversal, shorter prefixes are accessed earlier and long
prefixes automatically cover the range of short ones. Hence,
level traversal naturally guarantees the correctness of LPM.

Although an FPA can be used directly for route lookups,
its storage is still large. One thing we can optimize is the
horizontal redundancy (i.e., consecutive elements store the
same output port information). To remove such redundancy,
we convert each FPA into an overlay bitmap plus a correspond-
ing lookup table. Each bit in the overlay bitmap corresponds to
an entry in the FPA. We name the maximum consecutive range
containing identical elements a segment. The bit corresponding
to the first element of each segment is set to “1” and the others
“0”. The lookup table orderly stores the first elements of each
segment. Therefore, The n-th “1” in the bitmap corresponds
to the n-th entry of the lookup table.

Given a destination address, the lookup process first locates
a bit in a proper bitmap, then counts the number of 1s up to a
proper bit position, and finally gets the next port information
in a proper lookup table using the number as index.

In contrast, Lulea generates bitmaps in three steps as shown
in Figure 3: 1) Modify the prefix trie to a complete tree via
leaf pushing so that only leaf nodes contain port information
or pointers; 2) Traverse all leaf nodes from left to right and
project the nodes to the cut level; 3) Set the bits corresponding
to the beginning nodes (named as genuine heads in [5]) of each
projection range to “1” and others to “0”, and orderly store
the port or pointer information in a lookup table.

Clearly, the horizontal redundancy exists in Lulea bitmaps
as shown in Figure 3. In comparison, overlay bitmap can
eliminate such redundancy so that the number of entries in
the corresponding lookup table is reduced. The overlay bitmap
actually minimizes the number of 1s for a fixed prefix trie,
which can be proved by reduction to absurdity.

Theorem 1. Given a same prefix trie, the overlay bitmaps
contain the minimum possible number of 1s among all the
trie compression algorithms.

Proof. Let B denote a bitmap array (specifically, Bo denote
an overlay bitmap and Bn denote a bitmap from other al-

gorithms), T denote the corresponding lookup table, and L
denote the length of B. The number of 1s in B up to index i
is S(B, i) =

∑i
k=0B[k].

Suppose ∃Bn s.t. S(Bn, L) < S(Bo, L).
So, ∃i, s.t.

Bo[i] = 1, Bn[i] = 0 (1)

Based on Equation (1), if the IP address is i, we have

To [S (Bo, i)] = Tn [S (Bn, i)] = Tn [S (Bn, i− 1)] (2)

For the IP address i− 1, we have

To [S (Bo, i− 1)] = Tn [S (Bn, i− 1)] (3)

Comparing Equation (2) and (3), we have

To [S (Bo, i)] = To [S (Bo, i− 1)]

This contradicts the fact that there is no identical adjacent
entry in an overlay bitmap. Therefore, the assumption is wrong
and the theorem is proved. �

B. Implementation of OBMA B

Compared with the Lulea bitmap, the overlay bitmap is not
only storage-efficient but also easy to update. The reasons
are as follows: 1) Level traversal merges the adjacent FPA
elements with the same port information into one element,
leading to fewer 1s in overlay bitmaps and smaller-sized
lookup tables; 2) Lulea modifies the prefix trie via leaf
pushing to support LPM, but leaf pushing changes the original
structure of the prefix trie, which complicates trie updates. In
contrast, OBMA family keeps the original prefix trie structure
unchanged, which is convenient for updates.

A specific implementation of OBMA B uses a [18-6-8] trie
partition to split the 32-bit IP address space into three layers,
as shown in Figure 4. To improve the lookup speed, we adopt
the same direct pointing technology used in [2]. OBMA B
maintains one FPA on level 18 which is named Direct Pointing
Array (DPA). The size of the DPA is 512KB (i.e., 218 × 2B).
The lookup process uses the first 18 bits, the middle 6 bits,
and the last 8 bits of an IP address to access the data structures
at layer 1, layer 2, and layer 3, respectively.

For the lookup in layer 1, we directly use the highest 18 bits
of the IP address as index to locate an entry in the DPA. A
lookup entry has two bytes, containing a type field (1 bit) and
a port field (15 bits). When type is 0, the port field stores the
port information, and when type is 1, the port field stores the
index of a Layer 2 chunk list. The Layer 2 chunk list stores

IEEE/ACM TRANSACTIONS ON NETWORKING 4

Level 18

...

Level 24

...

...

6 bits

64 bits

32 bits

5 bits

8 bits

3 bits
...

Chunk

Group

Cluster

... ...

Level 32
256 bits

Fig. 4. [18-6-8] IP address partition.

256K

lookup

entries
DPA

Chunk List 2

0th

177th

10100001 0

00001100 10
10001011 6
10001100 3

P40
…

P3
P1

N3(732)
P2

N4(876)

0
0
1
0
1…

1771 1

type port

Chunk Structure

Group Structure

type port

4 code

words

lookup

entries

bitmap counter

group
index
width

group
list

Step 1

Step 2

chunk pointer

Step 3
Step 4

2

4bits

Index Table

17th

Step 7

Step 8:

IP[31:14]

IP[13:8]: 0 01 100

Step 5

group cluster bit

Step 6

Layer 1 lookup Layer 2 lookup

Chunk List 3Step 9

Layer 3 lookup

876th

chunk pointer

Fig. 5. OBMA B lookup structure and process.

pointers to locate a specific chunk structure for lookups in
layer 2. For example, in Figure 5, accessing the DPA with the
highest 18 bits of the IP address leads to the 177th element of
the Layer 2 chunk list according to the port information, and
finally gets the chunk pointer.

To improve the update performance, OBMA B applies the
adaptive grouping technique (to be explained in Sec VI) which
treats frequently updated area with smaller granularity. Some
terms used in the layer 2 and 3 lookups are defined as follows:

Chunk: A subtree in layer 2 (layer 3), which is 6 (8) levels
deep.

Group: A d-level subtree in a chunk, where d is in the range
of 3-6 (3-8) in layer 2 (layer 3). A group is the basic unit for
lookups and updates. A chunk is composed of 26−d (28−d)
groups in layer 2 (layer 3). As shown in Figure 4, d is five in
the chunk, so it has two five-level groups.

Cluster: A 3-level subtree in a group. A d-level group has
2(d−3) clusters. A cluster corresponds to an 8-bit bitmap and
serves for the fast determination of the number of 1s.

We illustrate the lookup structure of chunk, group, and
cluster in Figure 5. A chunk structure contains two parts:
1) group index width, indicating the number of bits in an
IP address segment used for layer 2 and 3 are group index;
2) group list, containing the pointers to each group structure.
For example, the IP address segment is (001100)2 and the
group index width is 1 in Figure 5, so the index for the group
structure is 0 and the first pointer in the group list is used to
obtain the group structure.

Since the height of the cluster is three, the lowest three bits
of the address segment are used as the bit index in a cluster
and the other bits excluding the group index are used as the
cluster index. For example, in Figure 5, the group index width
is 1, so the cluster index is (01)2 = 1 and the bit index is
(100)2 = 4.

A group structure consists of code words indexed by the
cluster index and lookup entries. An entry stores a pointer to
a Layer 3 chunk list if its type field is 1. The sizes of a code
word and a lookup entry are both 2 bytes. In a code word,
one byte stores the cluster bitmap and the other byte (i.e., the
counter field) records the cumulative number of 1s up to this
cluster in this group. As shown in Figure 5, the counter field
of the third code word is 6, which means the total number of
1s in the two previous code word bitmaps is 6. An auxiliary
Index Table, using the 8-bit bitmap as index, stores the number
of 1s in each bitmap. A part of cluster bitmap up to the given

bit position is used as the index to access the Index Table. To
get the number of 1s ahead of a given bit location in a cluster,
we simply add the value in the counter field and the value got
from the Index Table.

For example, the bitmap (00010001)2 has two 1s in it and
its decimal value is 17. So the 17th entry of the Index Table
stores the value 2. In our example, the cluster index is 1 so
the second code word is chosen. The bit index is 4 so the
cluster bitmap (10001100)2 in the code word is shifted right
by 8 − 4 − 1 = 3 bits. The resulting value (0001001)2 = 17
is used as index to access the Index Table, which returns the
value 2. Adding this value to 3, the value in the counter field
of the code word, we get the number 5, which is used as the
index to the lookup entries.

Algorithm 1 describes the OBMA B lookup process. Given
an IP address, OBMA B uses its first 18 bits to visit the DPA
to get a chunk list index in step 1. Next, OBMA B locates
the chunk in layer 2 in step 2 and 3. Then, OBMA B splits
the middle segment of the IP address, visits the corresponding
group structure, and gets the lookup entry in step 4-8. If the
entry stores a pointer, OBMA B keeps searching and locates
the chunk in layer 3 in step 9. The search in layer 3 is similar
to that in layer 2.

Algorithm 1 Lookup Algorithm of OBMA B
Input: Chunklist, DPA, IP .
Output: port.
1: entry ← DPA[IP [31 : 14]]
2: if entry.type == 0 then
3: return entry.port

4: width← ChunkList2[entry.port].groupWidth
5: Get groupIdx, clusterIdx, bitIdx from IP [13 : 8]
6: group← ChunkList2[entry.port].groupList[groupIdx]
7: codeword← group[clusterIdx]
8: lookup← group+ 1 << (3− width)
9: ix← codeWord.bits >> (7− bitIdx)

10: pix← codeWord.counter + IndexTable[ix]− 1
11: entry ← lookup[pix]
12: if entry.type == 0 then
13: return entry.port
14: else
15: /*search deep to layer 3 chunk like layer 2 chunk*/

IV. LOOKUP OPTIMIZATION

Since the update performance of OBMA B is extremely
good, we try to trade off some of the update performance for

IEEE/ACM TRANSACTIONS ON NETWORKING 5

256K

lookup

entries
DPA

Chunk List 2

0th

177th

10100001 0

10001011 6
10001100 3

P40
…

P3
P1

N3(732)
P2

N4(876)

0
0
1
0
1

…

1771

type port

Group Structure

type port

8 code

words

lookup

entries

bitmap counter

Step 1

Step 2

group pointer

Step 3 2

4bits

Index Table

17th

Step 4

Step 5:

IP[31:14] IP[13:8]: 001 100

cluster bit

Layer 1 lookup Layer 2 lookup

Chunk List 3Step 6

Layer 3 lookup

876th

chunk pointer

…

Fig. 6. OBMA L lookup structrue and process.

better lookup performance. OBMA L is such a variation.
Generally, a memory access incurs long latency. OBMA L

focuses on simplifying the lookup process by reducing the
number of memory accesses. It does not apply adaptive
grouping. Instead, it applies a fixed [0-3-3] partition in layer
2 and [0-5-3] in layer 3. As a result, the chunk structure can
be omitted and the chunk lists actually store group pointers as
shown in Figure 6.

For consistency, we still use the term of chunk list for
OBMA L. OBMA L gets the group pointer without needing
to visit the chunk structure, making the lookup faster. How-
ever, the big group makes the update slower because rebuilding
the entire bitmap and group structure needs more time now.

The lookup process of OBMA L can be deduced from that
of OBMA B easily, so we skip it here.

V. STORAGE OPTIMIZATION

It is possible to generate a sparer bitmap with fewer 1s for
some trie structure using a Bit Inversion Sequence (BIS). To
get the BIS, we propose an optimal algorithm with O(n2)
time complexity and an approximate one with O(n) time
complexity, where n denotes the bitmap length. We prove
the lower bound of the compression ratio based on the
Redfield–Pólya theorem [16, 17] and compare it with the
achieved compression ratio under the uniform distribution. By
embedding BIS to the OBMA B data structure, the resulting
OBMA S achieves better storage efficiency than OBMA B.

A. Bit Inversion Sequence

The number of 1s in an overlay bitmap directly determines
the number of lookup table entries. The overlay bitmap
achieves the minimum number of 1s for a prefix trie. However,
we can further reduce the number of 1s in the bitmap by taking
advantage of graph isomorphism.

In graph theory, two graphs G and H are isomorphic if there
exists a bijective function, f : V (G)→ V (H), which satisfies
that any two vertices u and v of G are adjacent in G iff f(u)
and f(v) are adjacent in H . Figure 7 shows two isomorphic
graphs of the original trie in Figure 1. We say an isomorphic
graph is optimal if its corresponding overlay bitmap contains
the minimum number of 1s. In this sense, the two graphs in
Figure 7 are both optimal.

An isomorphic graph is the result of permuting the FPA
with a bijective function. The problem of finding an optimal
isomorphic graph of the original trie is therefore to find such
an optimal permutation. Although n! permutations exist for an
FPA of length n, we can use a general sorting algorithm with

P1

P2

N1

P1

Permutations

vector:

P1

P2

N1

P1

Isomorphic graph 1

P2 P2 P1 P1 P1 P1 P1 N1

1 0 1 0 0 0 0 1

P2 P1 N1

FPA:

Overlay bitmap:

Lookup table:

[0,1,2,3,4,5,7,6],

[0,1,2,3,5,6,7,4], ...

[6,7,2,3,4,5,0,1]

[6,7,4,5,2,3,0,1] ,...

Isomorphic graph 2

N1 P1 P1 P1 P1 P1 P2 P2

1 1 0 0 0 0 1 0

N1 P1 P2

Original FPA：

P2 P2 P1 P1 P1 P1 N1 P1

Fig. 7. Isomorphic graphs example and the corresponding permutation vector
v. v[i] = j means the i-th element of the original FPA should be moved to
the j-th position.

the time complexity of O(n lg n) to find the optimal permu-
tations. However, an optimal permutation may not lead to an
ideal solution for the following reasons: 1) The permutation,
which is encoded as a permutation vector as shown in Figure 7,
needs to be stored along with the bitmap for lookup and
update. Unfortunately, the permutation vector may cancel out
the storage space saving acquired from fewer 1s in the overlay
bitmap. For example, the isomorphic graph 1 in Figure 7
represents a permutation from the original FPA, which can
be encoded as a permutation vector [0,1,2,3,4,5,7,6]. The
resulting overlay bitmap contains one less “1”, which saves
one entry (i.e., two bytes) from the lookup table. However,
storing the permutation vector requires eight bytes. 2) Even if
the overall storage is reduced, the lookup or update process
needs to take up to n table lookups on the permutation
vector to recover the original IP address, which influences the
performance, especially when n is large.

We use BIS to optimize the encoding for permutation and
limit its influence on lookup and update performance.

If the length of the original FPA is n = 2N , a BIS is a
N -bit sequence which encodes a specific permutation. After a
permutation, a bit’s new position index in a bitmap is the result
of the bit-wise XOR operation on the bit’s old position index
and the BIS. For example, if the BIS is (001), the original first
and second bits will be swapped, because their indexes, (000)2
and (001)2, after XORed with (001), are swapped. Applying
this to every bit position, we get a permutation equivalent to
the permutation vector [1,0,3,2,5,4,7,6].

The N -bit BIS can encode 2N permutations. To recover
the original trie structure, only bitwise XOR operations are
needed, which is much faster than decoding the permutation
vector. BIS cannot encode all the n! possible permutations,
so it cannot guarantee to capture the optimal overlay bitmap
with the minimum number of 1s. However, as long as a BIS
can generate a better bitmap with fewer 1s, a better storage
efficiency can be achieved. The BIS that can lead to the
minimum number of 1s in the resulting bitmap is optimal.

B. Algorithm for the Optimal BIS

Testing all the 2N permutations allowed by BIS to figure out
the optimal one is time consuming with a complexity of Θ(2N ·
(n−1)) = Θ(n2). OBMA allows n to be as large as 256. The
exhaustive search for the optimal BIS can significantly drag
down the update speed.A more efficient algorithm is needed.

IEEE/ACM TRANSACTIONS ON NETWORKING 6

N1 P1P1 P1P2 P2 P1 P1

0

0node

1

0node 1

1node

2

0node 2

1node 2

2node 2

3node

+1+1

+1 +1

Comparison for the 2nd bit

Comparison for the 1st bit

Comparison for the 0th bit

2nd bit = 0

cumulative benefit = 0
cost = 1,
benefit = 0,

1st bit = 0
cumulative benefit = 1
cost = 0,
benefit = 1,

0th bit = 1
cumulative benefit = 1
cost = 0,
benefit = 2,

0p 1p 2p 3p 4p 5p 6p 7p

Fig. 8. A BIS example using a greedy top-down algorithm

Instead of finding the globally optimal BIS, we use a one-
pass greedy algorithm to obtain a locally optimal BIS with the
time complexity of Θ(n). We use a full binary trie shown in
Figure 8 to explain the algorithm, in which nodedt denotes a
non-leaf node with the index of t at the depth of d, and pt
denotes a leaf node with the index of t. Clearly, the FPA is
the array of elements contained in the nodes from p0 to pn−1.

Each bit in a BIS corresponds to a depth in the trie. The
bit value 1 means the two subtries of each node at this depth
are swapped. We search a solution by determining the value of
BIS bits in order and in one pass which is essentially to decide
whether or not to switch the subtries at each depth from top
to bottom.

As described in Algorithm 2, each step determines the value
of one BIS bit based on two criteria: 1) the benefit of setting
the bit to 1, which is evaluated by the number of newly
emerging identical adjacent pairs; 2) the cost of setting the bit
to 1, which is evaluated by the net loss of identical adjacent
pairs over the cumulative benefits from previous steps. Only
when the benefit is higher than the cost, the current bit of the
BIS is set to be 1 and the accumulated benefit is updated.

In the example shown in Figure 8, the value of the first
BIS bit is determined first. Since swapping the two subtries
of node00 gives no benefit but has a cost of 1 (i.e., the
new adjacent pair of nodes, p0 and p7, have different port
information; meanwhile, p3 and p4, who have the same port
information, are set apart), the swap should not happen and
the first BIS bit should remain to be 0. We work through the
BIS bit by bit and eventually obtain the final BIS ”001”, which
reduces one “1” in the resulting overlay bitmap.

From the pseudo code of Algorithm 2, we can derive the
algorithm’s time complexity.

T = 2

N−1∑
i=0

2i−1∑
j=0

Θ(1)+

N−1∑
i=1

i−1∑
s=0

2s−1∑
j=0

Θ(1) = Θ(2N) = Θ(n)

Although this greedy algorithm further reduces the permu-
tation search space and may be trapped in a local optimal
solution, it runs much faster than the exhaustive search and
the result is not too far from the global optimal based on our
evaluation.

C. Compression Ratio Analysis

After applying a BIS on an FPA, we obtain a new overlay
bitmap, which is named bit-inversion bitmap. The compression

Algorithm 2 Greedy Top-to-down Algorithm
Input: N , PA.
Output: inv.
1: inv[N − 1 : 0]← 0, cumulative benefit← 0
2: ml← 2(N−1) − 1,mr ← 2(N−1), el← 0, er ← 2N − 1
3: if PA[ml] == PA[mr] then
4: sum cost← 1
5: else if PA[el] == PA[er] then
6: inv[n− 1]← 1
7: sum cost← 1
8: for i = N − 2 to 0 do
9: benefit← 0, cost← 0

10: range = 1 << (i+ 1)
11: for j = 0 to 2(N−i−1) − 1 do
12: base← j << (i+ 1)
13: ml← base+ range/2− 1, mr ← ml + 1
14: el← base, er ← base+ range− 1
15: if PA[ml] == PA[mr] then
16: cost += 1
17: if PA[el] == PA[er] then
18: benefit += 1
19: for s = 0 to N − i− 2 do
20: range =← 1 << (n− s− 1)
21: for j = 0 to 2s - 1 do
22: base1← j << (n− s)+ inv[i+1] << (n− s− 1)
23: base2← j << (n− s)+ inv[i+ 1] << (n− s−1)
24: ml← base1 + range/2− 1
25: mr ← base2 + range/2
26: if PA[ml] == PA[mr] then
27: benefit += 1
28: if benefit > cost+ cumulative benefit then
29: inv[i]← 1
30: cumulative benefit += benefit
31: else
32: cumulative benefit += cost

33: return inv

ratio is defined as the ratio of the number of 1s in the bit-
inversion bitmap to that in the original overlay bitmap.

Theorem 2. Assume that a port array has n = 2N elements
and each element can take an arbitrary port out of M different
ports. The total number of element-port combinations is Mn,
and the lower bound of the compression ratio is 1

n .

Proof. In group theory, each permutation can be represented
as a cyclic notation. The permutation vector [0,1,2,3,4,5,6,7]
can be written as (0)(1)(2)(3)(4)(5)(6)(7), and [1,0,3,2,5,4,6,7]
can be written as (0,1)(2,3)(4,5)(6,7). The number of “()” pairs
is the cycle number, so the cycle number is 8 for the first case
and 4 for the second. The arrangements are in an orbit if they
can be transformed to each other by the permutation group.

A BIS represents a specific permutation. All the permuta-
tions that can be represented by BIS make up a permutation
group. In this permutation group, one permutation keeps the
original order, whose cycle number is n. The rest 2N − 1
permutations have the same characteristic, i.e., one-to-one
swaps between element, whose cycle number is n/2.

According to Redfield–Pólya theorem [16], the number of
orbits is as below,

l =
1

|G|
∑
g∈G

M c(g) =
Mn + (n− 1)M

n
2

n
(4)

IEEE/ACM TRANSACTIONS ON NETWORKING 7

TABLE I
REAL COMPRESSION RATIO UNDER n = 8, 16

Theoretical
lower bound M=2 M=3 M=4 M=5 M=6

n=8 12.5% 50.0% 48.97% 51.66% 54.79% 57.82%
n=16 6.25% 29.37% 27.76% 29.08% 30.80% 32.56%

where l denotes the number of orbits, G denotes the
permutation group, |G| denotes the element number in G, and
c(g) denotes the number of cycles of the element g.

Because the permutation group divides the Mn arrange-
ments to l orbits, and at least one arrangement in an orbit
has the bitmap with the fewest 1s, the lower bound of the
compress ratio is

l

|G|
=

1

n
+
n− 1

n
M−

n
2 >

1

n
(5)

�
Theorem 2 shows that longer bitmap has a potential to

achieve a higher compression ratio. It also provides an ideal
compression limit, which can be approached if there is only
one combination whose bitmap has the fewest 1s for all orbits.

We set n to 8 and 16, and M from 2 to 6 to show some
real compression ratios in Table I. We have some observations
on the results: 1) the real compression ratios shows not so
close to the lower bound, due to more than one combination
in an orbit with the minimum number of 1s; 2) The optimal
compression ratios are achieved for both n when M = 3;
3) the real compression ratios grow slowly after M = 3.
Most importantly, although there is a big gap between the real
compression ratios and the theoretical limit, the compression
effect is still significant and a larger n can make the result
better.

The above analysis is based on the assumption that the
port distribution is uniform which may not be true for real
IP tables. We do experiments to get the compression ratio on
real IP tables in Section VII, where it actually indicates a very
encouraging result..

D. Structure of OBMA S

OBMA S’s architecture is similar to OBMA B. In addi-
tion to the application of BIS, OBMA S adopts two new
approaches to further optimize the storage.

First, when the number of prefixes in a chunk is less than
a predefined value K (e.g., K = 4), we use a sparse chunk
structure to replace the original bitmap chunk. A sparse chunk
is identified by a new 1-bit type field in the chunk structure. A
sparse chunk is composed of k (k ≤ K) sparse entries, which
are arranged in descending order of prefix length. Each sparse
entry consists of three fields: prefix, mask, and lookup entry.
In a sparse chunk, the IP address segment does a linear search
to find the best match.

Second, we orchestrate the BIS into the OBMA S structure
by taking advantage of the memory word alignment without
introducing extra storage overhead. Each group is assigned
a BIS. The BISes for all the groups in a chunk are packed
together into seven bytes in the chunk structure, following 1-bit
type and 7-bit group width fields. This assignment constrains

the group width to be smaller than 4, because otherwise the
size required by all the BISes will exceed seven bytes.

The lookup process of OBMA S is similar to what is
described in Algorithm 1, except that the cluster index and
bit index are obtained from the bitwise XOR operation over
overlay bitmap and BIS. In the example in Fig 5, if the BIS
stored in the chunk structure is (01010), the new cluster index
is (01)2 ⊕ (01)2 = 0 and bit index is (100)2 ⊕ (010)2 = 6.

VI. FAST AND ZERO-INTERRUPT UPDATE

OBMA and the other trie-based algorithms need two steps
for an incremental update: 1) Modify the trie according to
the updated prefix(es) and generate a new partial or entire
lookup structure; 2) Use the new structures to modify or
replace the running one.The first step can run in parallel with
lookups using the multi-threading technique. We define the
time consumed in this step as execution time. The second step
needs to lock the data structure temporarily. We define the
time consumed in this step as interrupt time.

In this section, we first examine the characteristics of
updates via real update traces. Second, we present a series of
update optimizations for the OBMA family algorithms which
reduce the execution time and achieve zero interrupt time.

A. A Closer Look at Bursty Updates

We download the RIB update traces for three route tables:
Oregon, Equinix, and ISC from April 1 to April 30, 2017. The
trace sizes are 45 GB, 6 GB, and 55 GB data, respectively [7,
9]. We are interested in the peak update rate in each days and
the update locality.

Figure 9 shows the update statistics for the three tables. The
updates are bursty and the bursts are recurring. At peak time
the update rate is up to 181.0 K/s, 66.5 K/s and 59.8 K/s for
Equinix, ISC and Oregon, respectively.

We examine the update locality on prefixes and on chunks.
Figure 10 shows the length distribution of updated prefixes.
The updates on prefix length 24 account for about 50% of
the total updates. The top three prefix lengths with the highest
update frequency are 24, 22, and 23, accounting for more than
70% of the total updates. Figure 11 shows the CDF of updates
over chunks for the three tables on April 1st, 2017 (the results
for the other days are similar). The updates on chunks show
strong locality: 20% of chunks receive over 80% of updates.

B. Reducing Execution Time

When an update arrives, OBMA updates the prefix trie
first. OBMA does not perform leaf-pushing, so the time spent
on modifying the original prefix trie is negligible. OBMA
then conducts level traversal and generates a new bitmap.
The complexity of level traversal is O(2D), where D is the
height of subtrie. However, the updated prefix only affects
its coverage nodes and it is unnecessary to start the traversal
from the root node in most instances. We also segment the
bitmap into groups to narrow the scope of level traversal in
Chunks. In order to exploit the update locality, we apply an
adaptive grouping approach on OBMA except for OBMA L.

IEEE/ACM TRANSACTIONS ON NETWORKING 8

1 4 7 10 13 16 19 22 25 28
Date

0

50

100

150

200

Pe
ak

 u
pd

at
e

ra
te

 (K
/s

) Equinix
ISC
Oregon

Fig. 9. Peak update statistics for
the tables

<16 18 21 24 27 30
Length of prefix

0.0

0.1

0.2

0.3

0.4

0.5

R
at

io

Equinix
ISC
Oregon

Fig. 10. Length distribution of
updated prefixes

0.2 0.4 0.6 0.8 1.0
Proportion of the toatal chunks

0.92

0.94

0.96

0.98

1.00

C
D

F
of

 c
hu

nk
 u

pd
at

e

Equinix
ISC
Oregon

Fig. 11. CDF of chunk update

0

Insert [010/3, P3]

Rebuild

P3!=P1

 Original group structure

Insert an entry

 New group structure

0 P2

0 P1

1 N1

0 P1

101000011

0

0 P2

0 P3

0 P1

1 N1

101100011

0 P1

Locate the bit and

lookup table entry

P1

P2

P1

P3 N1

Fig. 12. Example of 24th-level opti-
mization

Because in many cases, the update is just a non-pointer node
insertion or modification at the 24th level, we can use a 24th-
level optimization to skip the level traversal and rebuild the
group structure based on the existing one directly. The details
of the adaptive grouping and the 24-level optimization are as
follows.

1) Adaptive grouping: The update locality inspires us to
develop an adaptive grouping approach. Based on the update
frequency, the FPA of each chunk can be partitioned into a
different number of equal-sized groups. We rebuild each group
as a separate lookup structure and the entire lookup table
is organized as separable and independent group structures.
Frequent updates end up in fine-grained groups, only requiring
the reconstruction and replacement of the affected group
structures. Group partitioning is flexible. A smaller group, at
the cost of more storage for group pointers, needs fewer bytes
to access for reconstruction so the updates on it are faster. As
the result of adaptive grouping, the frequently updated chunks
contains more small-sized groups and the infrequently updated
chunks can contain only one group.

Let the chunks with the group width of i bear an update
frequency in the range of [fi−1, fi), where fi = βfi−1.
Especially, in layer 2, the first frequency range is [0, f0)
and the last is [f2,∞). Therefore, given an initial frequency
threshold f0 and a factor β, we can get the mapping between
update frequency and the group width. Our adaptive grouping
approach is composed of two processes: online addition and
periodic decay.

Online addition: we maintain a counter for each chunk and
increase it by one whenever the chunk receives an update. If
the counter reaches the current range’s upper bound, the group
width is incremented by one and the chunk is rebuilt.

Periodic decay: We check the counters of all chunks
periodically (e.g. each hour or each day). If a counter value
is smaller than its current lower bound , we rebuild the chunk
according to the update frequency and the group width.

2) 24th-level Optimization: Level traversal can be expen-
sive in terms of CPU cycles. If we can avoid the level traversal,
the update performance will be improved. The 24th-level
optimization is based on the fact that for an updated prefix
with the length of 24, if its corresponding node in the prefix
tree is neither existent nor a pointer node, the reconstruction
of the group structure can be done on the old group structure
directly without needing to traverse the prefix trie. The statistic
results show that 99.9% of updates with the prefix length of
24 meet the condition and nearly 50% of the updates are for
prefixes with the length of 24, so the optimization is effective.

TABLE II
BITMAP TRANSFORMS ON MIDDLE NODES

Original bitmap Updated bitmap Example
(00) (11) insert B, AA← BA

(01) (10) insert B, AB ← BB
(11) insert C, AB ← CB

(10) (01) insert A, ABB ← AAB
(11) insert C, ABB ← ACB

(11)

(00) insert B, BAB ← BBB
(01) insert C, CAB ← CCB
(10) insert B, CAB ← CBB
(11) insert D, CAB ← CDB

We use the trie structure in Figure 12 as an example
to illustrate the optimization at level 3. When dealing with
an updated prefix [010/3, P3], OBMA directly visits the
group structure and finds the two-bit bitmap “10” and the
corresponding ports P1. The bitmap “10” means that the node
to be modified and its right neighbor both store P1. We can
also get P1’s left neighbor’s port P2 by visiting P1’s previous
entry. As P3 does not equal to either P2 or P1, this update
sets the second bit of the bitmap to 1 and adds a new entry of
P3 in front of P1. The resulting group structure is the same as
that derived from the level traversal, but it is acquired faster.

The actual situation is more complex than the example.
We need to consider both the local bitmaps and the cluster’s
position. For example, if the node to be modified is at the head
or tail of a group, we only need to consider one neighbor. If
the node is at the tail of a cluster but not at the tail of a group,
we also need to consider the counter field of the code word.
All the possible bitmap transformations on a middle nodes are
listed in Table II for the example. Note that we do not always
need to access the lookup table three times to get the node
and its two neighbors. If one of the two-bit is 0, the lookup
entry corresponding to it is the same as its left neighbor. One
lookup table access is saved in this case.

C. Zero-interrupt Update

We use multi-threading to achieve zero-interrupt update.
The update process has its dedicated thread. OBMA needs
to generate and maintain a prefix trie for building its lookup
structure. Since the lookup process only accesses the lookup
structure and the first step of the udapte process only works
on the prefix trie, they can work in parallel. The second step
of the update process needs to modify the DPA elements or
replace the OBMA structure with the new pointers of chunks
or groups, incurring the thread synchronization problem.

To address this problem, we do not apply any thread lock
due to its low efficiency. Instead, we use atomic operation to

IEEE/ACM TRANSACTIONS ON NETWORKING 9

ensure the safety of OBMA structure reading and writing.A
key problem is to ensure the safety of the situation that the
lookup thread is reading the stale memory while the update
thread is releasing it. To solve this problem, we use a pointer
buffer with enough size to cache the replaced pointers. The
memory will not be released until its pointer is popped from
the buffer. Figure 10 shows that few updated prefixes are
shorter than 18 and the chunk/group number is very large,
so the situation of reading a chunk/group and replacing its
pointer rarely happens at the same time. Even if it happens,
it only produces a wrong lookup results but cannot crash the
system due to illegal memory access. The transient forwarding
errors are tolerable for routers. The benefit of zero-interrupt
update is substantial.

The updates to the lookup structures are related to the length
of the updated prefix. If the length is shorter than 19, only the
DPA needs to be updated. If the length is greater than 18,
we need to generate several new group pointer(s) and even
new chunk pointer(s). Our experiments show that on average
an update does not modify more than one group or chunk
pointer, requiring only tens of bytes of extra storage space. In
contrast, Poptrie also claims to support zero-interrupt updates,
but it needs to rebuild a new lookup structure entirely and
replace the root pointer to switch from the old one by an
atomic operation, which is more complex and results in a
larger memory footprint in practice. Moreover, rebuilding a
new lookup structure can take tens of milliseconds when the
update prefix is shorter than 19. As a negative result,the long
delay of the zero-interrupt update in Poptrie could cause more
packets are forwarded incorrectly.

VII. EVALUATION

In this section, we evaluate the performance of OBMA B,
OBMA S, and OBMA L on storage, lookup, and update. As
OBMA S and OBMA L have different optimization objects,
we evaluate their performance on storage and lookup, respec-
tively. In order to eliminate random deviation, each reported
lookup or update speed value is the result of the average from
20 repeated experiments.

A. Experiment Setup

Platform: We conduct experiments on a Dell M4800 mobile
workstation with an Intel CPU Core i7-4900MQ. The CPU
contains four 2.8GHz cores with each supporting two threads.
Each CPU core has an independent L1 cache (128KB D-Cache
and 128KB I-Cache) and an L2 cache (1MB). The four cores
share an L3 Cache (8 MB). The workstation is equipped with
8GB DDR3 (1.6GHz) memory and runs 64-bit Ubuntu-14.04-
LTS OS.

Datasets: The route tables used for evaluation are down-
loaded from three routers (i.e., Oregon, Equinix, and ISC) on
April 1st, 2019 [7, 9]. We use CAIDA traces [8] to test the
lookup speed. We collect update packets from RIPE Network
Coordination Center [7] to test the update speed.

Algorithms: We compare the OBMA family with two state-
of-art works, SAIL [4] and Poptrie [2], and two classic works,
Lulea [5] and binary trie [3]. OBMA, Poptrie, and Lulea all

use the partition mode [18-6-8]. OBMA B adopts the update
optimizations discussed earlier. Specifically, we set the initial
threshold f0, the factor β, and the cycle of the adaptive
grouping to 32, 4, and one day, respectively.

B. Memory Efficiency
1) The Number of 1s: We first examine the benefit gained

from the overlay bitmap and bit-inversion bitmap on real route
table snapshots in Figure 13. For fairness, all the bitmaps are
fixed to be 16 bits long. The three tables contain 769K, 780K,
and 804K prefixes, respectively. The corresponding next-hop
port counts are 18, 6, and 43. The overlay bitmaps reduce
about 2/3 of 1s from the basic Lulea bitmaps by eliminating
the horizontal redundancy.

The BIS compression ratios are 89.2%, 88.7%, and 77.7%,
respectively, which are decent but not as good as the results
in Table I. An overlap bitmap is more compressible if the
number of 1s in it far exceeds the number of unique ports in
the corresponding FPA. Such condition is less likely in real
route tables than in synthesized route tables. For example,
in the Equinix table, the bitmaps of 66% of groups are
incompressible and 54.1% of groups contain just one port.
As a result, only 23.4% of groups are actually compressed.
However, the gain is still substantial enough to justify the
optimization effort.

2) Storage Comparison: We use the three route tables to
compare the storage efficiency in the unit of bytes per prefix
for OBMA B, OBMA S Poptrie, SAIL, Lulea, and Binary
Trie. Figure 14 shows the results for the five algorithms.
Lulea, Poptrie, OBMA B, and OBMA S require relatively
small storage, which are 5.87, 5.33, 4.85, and 3.98 bytes per
prefix on Equinix, respectively. OBMA S achieves the best
storage efficiency with BIS and the sparse chunk optimization,
saving 25.33% storage of Poptrie. OBMA B is the second
best except on the Oregon table.Although Poptrie has a good
storage efficiency for the lookup structure, it needs to pre-
allocate more than ten megabytes of storage for updates, which
we do not take into account. Lulea also has a good storage
efficiency but its update performance is poor. While fast in
lookups, Sail presents a poor storage efficiency, which is only
better than the basic Trie but multiple times worse than the
other algorithms.

It is possible to further compress the lookup structure size of
OBMA B and OBMA S by reducing the DPA size and raising
the adaptive grouping threshold, but these will affect the
update performance negatively. We give the lookup and update
performance a higher priority than the storage efficiency so no
further memory reduction is pursued.

To test the memory scalability, we randomly select some
prefixes in the Equinix table to form tables with different
sizes, and run the algorithms on them. Figure 15 shows that
OBMA S and OBMA B continue to be the most efficient for
all the route table sizes. Lulea and Poptrie also scales. Poptrie
consumes more space than Lulea when the table is small.

C. Lookup Speed
1) Single-threading: Figure 16 shows the lookup speeds of

the algorithms on the three route tables. OBMA S− means

IEEE/ACM TRANSACTIONS ON NETWORKING 10

Equinix ISC Oregon
0

200

400

600

800

1000

1200

1400

T
he

 n
um

be
r

of
 "

1"
 (K

)

Lulea
bitmap

Overlay
bitmap

Bit-inverse
bitmap

Fig. 13. The number of 1s in Lulea, overlay and
bit-inversion bitmaps on Equinix, ISC and Oregon

Equinix ISC Oregon
0

10

20

30

40

50

60

B
yt

es
/p

re
fix

Trie
Lulea

SAIL
Poptrie

OBMA_B
OBMA_L

OBMA_S

Fig. 14. Storage efficiency of Trie, Lulea, SAIL,
Poptrie, OBMA B and OBMA S on the tables

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Prefix proportion

0

5

10

15

20

25

30

35

40

L
oo

ku
p

st
ru

ct
ur

e
si

ze
 (M

B
)

Trie
Lulea
SAIL
Poptrie

OBMA_B
OBMA_L
OBMA_S

Fig. 15. Storage overhead of the algorithms over
different prefix proportions of Equinix

Equinix ISC Oregon
0

50

100

150

200

250

300

L
oo

ku
p

sp
ee

d
(M

pp
s)

Trie
Lulea

SAIL
Poptrie

OBMA_B
OBMA_L

OBMA_S
OBMA_S

Fig. 16. Lookup speed of the algorithms on
Equinix, ISC and Oregon

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Prefix proportion

0

50

100

150

200

250

300

350

400
L

oo
ku

p
sp

ee
d

(M
pp

s)
Trie
Lulea

SAIL
Poptrie

OBMA_B
OBMA_L

OBMA_S
OBMA_S

Fig. 17. Lookup speed of the algorithms over
different prefix proportions of Equinix

1 2 3 4 5 6 7 8 9 10
Thread number

0

100

200

300

400

500

600

700

800

900

L
oo

ku
p

sp
ee

d
(M

pp
s)

SAIL
Poptrie
OBMA_B
OBMA_L

Fig. 18. lookup speed of SAIL, Poptrie,OBMA B
and OBMA L with Multi-threading on Equinix

OBMA S without the sparse chunk optimization. OBMA L
is the fastest, achieving about 252.02, 237.21 and 251.01
Mpps on the three tables, respectively. The second best is
OBMA B which achieves 219.56, 216.74, and 228.19 Mpps
lookup speeds on the three tables, respectively. The speed is
fast enough to support small-packet line-speed forwarding for
a 100Gbps link.

OBMA S is slower than OBMA B, but it is faster than
Poptrie on Equinix and ISC table. To reveal the reason, we use
Intel VTune Amplifier [18] to analyze the codes and find that
the bottleneck is in the false branch prediction when decoding
the chunk type. Therefore, we test OBMA S− without the
sparse chunk optimization, and its lookup speed is signifi-
cantly improved and only slightly slower than OBMA B. The
storage of OBMA S−, however, increases by 0.75 byte per
prefix. Poptrie is better than SAIL on the Oregon table, but
performs poorly on the other two tables, which reveals that the
performance of Poptrie strongly correlates with the structure
of routing tables.

For scalability test, we run the algorithms on different sized
tables derived from the Equinix table and show the lookup
speeds in Figure 17. Lulea and Trie’s lookup speeds are slow
but stable. Other faster algorithms show a speed reduction
as the table size increases. The lookup speed of OBMA B
and OBMA S− are visibly faster than SAIL up to 80% of
prefix proportion. OBMA S is faster than SAIL when the table
size is small, because the sparse chunk ratio is high and the
probability of false branch prediction is reduced. OBMA L
is the fastest for all the table sizes. To counter the lookup
speed loss due to large tables, we can use the multithreading

technique.
2) Multi-threading: Figure 18 shows the lookup speeds

of SAIL, Poptrie, OBMA B and OBMA L under different
number of lookup threads. While OBMA L is still the fastest
one, OBMA B is a little slower than SAIL. This is because
we cannot deploy the DPA and chunk lists in the stack space
as local variables in multiple threads, and we have to allocate
heap space for them. All the algorithms see a rising trend until
the thread number reaches 8, and the lookup speeds peak at
706, 602, 772, and 650 Mpps, respectively. This is because the
CPU has 4 cores and 8 hardware threads in total. When the
number of software threads exceeds 8, the lookup performance
cannot be further improved due to hardware limitations.

D. Update Performance

We measure the update speeds of Trie, Lulea, SAIL, Poptrie,
and OBMA, and show the results in Figure 19. Unsurprisingly,
Trie exhibits the fastest update speed, which sets an upper
bound for the update performance. Lulea handles incremental
updates poorly with an update speed so low that the value is
hardly visible. Poptrie and SAIL are slightly better than Lulea.
OBMA B is the only one whose update performance is close
to the upper bound. It is 15 and 37 times faster than Poptrie
and SAIL in terms of update speed.

The update speed of OBMA L is a half of that of OBMA B
due to OBMA L’s fixed group size which makes rebuilding the
group structure for updates more time consuming. OBMA S is
even slower than OBMA L for updates due to the extra BIS
processing. However, in general the OBMA family is much

IEEE/ACM TRANSACTIONS ON NETWORKING 11

Equinix ISC Oregon
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

U
pd

at
e

sp
ee

d
(M

/s
)

Trie
Lulea
SAIL
Poptrie
OBMA_B
OBMA_L
OBMA_S

Fig. 19. Update speed of Trie, Lulea, SAIL,
Poptrie and OBMA B on Equinix, ISC and Oregon

0 50 100 150 200 250 300 350
Update speed (K/s)

25

50

75

100

125

150

175

200

225

250

L
oo

ku
p

sp
ee

d
(M

pp
s)

SAIL
Poptrie
OBMA_B
OBMA_L

Fit curve of SAIL
Fit curve of Poptrie
Fit curve of OBMA_B
Fit curve of OBMA_L

Fig. 20. Joint performance of lookup and update
with single-threading on Equinix

1L+1U 2L+1U 3L+1U 4L+1U
0

50

100

150

200

250

300

350

400

450

500

L
oo

ku
p

sp
ee

d
(M

pp
s)

Lookup speed of Poptrie
Lookup speed of OBMA_B
Lookup speed of OBMA_L
Update speed of Poptrie
Update speed of OBMA_B
Update speed of OBMA_L

0

5

10

15

20

25

30

U
pd

at
e

sp
ee

d
(M

/s
)

Fig. 21. Joint performance of lookup and update
with multi-threading on Equinix

TABLE III
AVERAGE NUMBER OF POINTERS AND PDA ELEMENTS MODIFIED, AND

EXTRA STORAGE NEEDED BY ZERO-INTERRUPTION TIME

Equinix ISC Oregon
Average changed pointers 0.40 0.44 0.82
Average modifed DPA elements 0.64 0.82 1.53
Average additional memory 4.05 B 5.22 B 10.79 B

better than the other state-of-art algorithms in terms of the
update performance.

OBMA B’s update performance varies on different tables.
We measure some micro indicators to explore the underlying
reason. 1) Average changed pointers, all the chunk or group
pointers that are changed; 2) Average modified DPA elements,
all the DPA elements that are modified; 3) Average extra
memory, all the required memory that the new data structures
occupy. The results are reported in Table III. In general, an
update by OBMA B needs to change less than 1 pointers and
modify at most 1.53 DPA elements. The average additional
memory is just a few bytes. All of these contribute to the high
update speed. The largest values occur on the Oregon table,
which explain the relatively low update speed on it.

Table IV shows the update performance of OBMA B on
the Equinix table when using different optimization parameters
and configurations. The 24th-level optimization is configured
by default. Adaptive grouping− means the adaptive grouping
optimization is turned off. For the fixed grouping configura-
tions, having more groups means a higher update performance,
a lower lookup performance, and a higher storage cost. For
example, when using 8 groups per chunk (i.e., the grouping
configuration of (3-0-3)), the update speed can achieve 14.83
M/s, which is much faster than the case of using one group per
chunk (i.e., the grouping configuration of (0-3-3)). However,
the latter case has better lookup and storage performance. The
adaptive grouping and the 24th-level optimization can help to
achieve a well-balanced performance on lookup, update, and
storage. Without the 24th-level optimization, the update speed
will drop by about 26%.

E. Joint Performance of Lookups and Updates

In real applications, the lookup and update processes always
work at the same time. Therefore, it is important to understand
how these two processes interact with each other and what is
their joint performance.

TABLE IV
UPDATE PERFORMANCE OF OBMA B WITH DIFFERENT OPTIMIZATIONS

Storage (MB) Lookup (Mpps) Update (M/s)
OBMA L (0-3-3) 3.33 252.02 6.65
Fixed Group (1-2-3) 3.90 216.21 10.52
Fixed Group (2-1-3) 5.08 212.04 13.17
Fixed Group (3-0-3) 7.45 209.84 14.83
Adaptive grouping− 3.73 219.56 10.81
Adaptive grouping 14.58

1) Single-threading: We first run experiments to check the
joint performance of lookups and updates when both are
running in a single thread. The input trace is a mix of IP
addresses and update prefixes.

Figure 20 shows the scattered lookup-update performance
for SAIL, Poptrie, OBMA B, and OBMA L on the Equinix
table and their linear regression lines. A higher line means
faster lookup speed and a flatter line means the update
process has less impact to the lookup process. OBMA B and
OBMA L are clear winners. When the update speed is high,
OBMA B performs better than OBMA L for lookups. This
result implies that OBMA L should be applied in scenarios
with relatively lower update requirements.

2) Multi-threading: Figure 21 shows the joint lookup and
update performance for Poptrie, OBMA B and OBMA L on
the Equinix table with multiple threads, where “nL + 1U”
means n threads for lookups and one thread for updates.
Since SAIL does not provide a multi-threading version sup-
porting parallel lookups and updates, we only compare Pop-
trie, OBMA B and OBMA L. To realize the zero-interrupt
updates, we use the scheme described in Section VI-C on
OBMA B. The lookup speed keeps increasing as the number
of lookup threads increases, and OBMA L keeps the highest
position. However, compared with the case that only lookup
threads are tested as shown in Figure 18, they all see some
lookup speed drop. This is because the update thread modifies
the lookup structure, which nullifies many cache lines for
lookups. Since OBMA B and OBMA L only conducts partial
structure updates but Poptrie always replaces the entire lookup
structure, they has a higher cache hit rate and less influ-
enced by the update process. The update speeds keep almost
stable, and OBMA B outperforms others due to its update
optimizations. Overall, with four lookup threads, OBMA L
and OBMA B supports more than 500 Mpps and 450 Mpps
lookup throughput with zero-interrupt updates, respectively.

IEEE/ACM TRANSACTIONS ON NETWORKING 12

VIII. CONCLUSION

The OBMA family improves the memory efficiency and
lookup/update performance of software-based route lookup
and update algorithms. With a series of architectural and
engineering optimizations, OBMA B supports fast and zero-
interrupt updates, which is effective in reducing the packet
buffer size in routers, accelerating the network state conver-
gence, and improving the network QoS. OBMA L further
optimizes OBMA B’s lookup throughput and OBMA S opti-
mizes OBMA B’s storage, which provide us more flexibility
when choosing algorithms in different application scenarios.
Since OBMA is trie-based, it can be naturally applied to
lookups on IPv6 networks or multiple virtual route tables in
an NFV environment.

ACKNOWLEDGEMENTS

This work is sponsored by NSFC (61373143, 61432009,
61872213).

REFERENCES
[1] T. Holterbach, S. Vissicchio, A. Dainotti, and L. Vanbever, “Swift:

Predictive fast reroute,” in Proc. of ACM SIGCOMM. ACM, 2017,
pp. 460–473.

[2] H. Asai and Y. Ohara, “Poptrie: A compressed trie with population
count for fast and scalable software ip routing table lookup,” in ACM
SIGCOMM Computer Communication Review, vol. 45, no. 4. ACM,
2015, pp. 57–70.

[3] K. Sklower, “A tree-based packet routing table for berkeley unix.” in
USENIX Winter, 1991, pp. 93–99.

[4] T. Yang, G. Xie, Y. Li, Q. Fu, A. X. Liu, Q. Li, and L. Mathy, “Guar-
antee ip lookup performance with fib explosion,” in ACM SIGCOMM
Computer Communication Review, vol. 44, no. 4, 2014, pp. 39–50.

[5] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small forwarding
tables for fast routing lookups,” in Proc. of ACM SIGCOMM, vol. 27,
no. 4, 1997.

[6] T. Yang, Z. Mi, R. Duan, X. Guo, J. Lu, S. Zhang, X. Sun, and
B. Liu, “An ultra-fast universal incremental update algorithm for trie-
based routing lookup,” in IEEE International Conference on Network
Protocols (ICNP), 2012, pp. 1–10.

[7] Ripe ncc:ripe network coordination centre. [Online]. Available:
http://www.ripe.net/

[8] Caida anonymized internet trace. [Online]. Available: http://www.caid
a.org/data/monitors/passive-equinix-sanjose.xml

[9] University of oregon route views archive project. [Online]. Available:
http://archive.routeviews.org/

[10] M. A. Ruiz-Sanchez, E. W. Biersack, and W. Dabbous, “Survey and
taxonomy of ip address lookup algorithms,” IEEE network, vol. 15,
no. 2, pp. 8–23, 2001.

[11] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest prefix
matching using bloom filters,” in Proc. of ACM SIGCOMM, 2003, pp.
201–212.

[12] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast hash table
lookup using extended bloom filter: an aid to network processing,” ACM
SIGCOMM Computer Communication Review, vol. 35, no. 4, pp. 181–
192, 2005.

[13] S. Han, K. Jang, K. Park, and S. Moon, “Packetshader: a gpu-accelerated
software router,” in ACM SIGCOMM Computer Communication Review,
vol. 40, no. 4, 2010, pp. 195–206.

[14] Y. Li, D. Zhang, A. X. Liu, and J. Zheng, “Gamt: a fast and scalable ip
lookup engine for gpu-based software routers,” in Proc. of ACM/IEEE
ANCS. IEEE Press, 2013, pp. 1–12.

[15] Z. Mi, T. Yang, J. Lu, H. Wu, Y. Wang, T. Pan, H. Song, and B. Liu,
“Loop: Layer-based overlay and optimized polymerization for multiple
virtual tables,” in IEEE International Conference on Network Protocols
(ICNP), 2013, pp. 1–10.

[16] P. G, “Kombinatorische anzahlbestimmungen für gruppen, graphen und
chemische verbindungen,” Acta mathematica, vol. 68, no. 1, pp. 145–
254, 1937.

[17] J. H. Redfield, “The theory of group-reduced distributions,” American
Journal of Mathematics, vol. 49, no. 3, p. 433, 1927.

[18] Intel vtune amplifier. [Online]. Available: https://software.intel.com/e
n-us/vtune

Chuwen Zhang Received the B.S. degree in com-
munication engineering from Northwestern Poly-
technical University, Xi’an, China, in 2015. He
is Currently working toward the Ph.D. degree in
Computer Science at Tsinghua University, Beijing,
China and his advisor is Dr. Bin Liu. His research
interests include high-performance switches/routers,
named data networking and vehicle networks.

Yong Feng received the B.S. degree in software en-
gineering from Northwestern Polytechnical Univer-
sity, Xi’an, China, in 2018. He is currently working
toward the Ph.D. degree in Computer Science at
Tsinghua University, Beijing, China and his advisor
is Dr. Bin Liu. His research interests include route
compression, network measurement and congestion
control.

Haoyu Song received the BE degree in electronics
engineering from Tsinghua University, in 1997, and
the MS and DSc degrees in computer engineering
from Washington University in St. Louis in 2003 and
2006, respectively. He is a senior principal network
architect with Futurewei Technologies, USA. His
research interests include software defined network,
network virtualization and cloud computing, high
performance networked systems, algorithms for net-
work packet processing and intrusion detection. He
is a senior member of the IEEE.

Ying Wan received the B.S. degree in Communica-
tion Engineering from Northwestern Polytechnical
University in 2016. He is currently working toward
the Ph.D. degree in Computer Science at Tsinghua
University, Beijing, China and his advisor is Dr. Bin
Liu. His research interests include high performance
network algorithm, and software defined network.

Wenquan Xu Received the B.S. degree in mi-
croelectronics science and engineering from North-
western Polytechnical University, Xi’an, China, in
2017. He is Currently working toward the Ph.D.
degree in Computer Science at Tsinghua University,
Beijing, China and his advisor is Dr. Bin Liu. His
research interests include deep learning, named data
networking and vehicle networks.

IEEE/ACM TRANSACTIONS ON NETWORKING 13

Bin Liu received the M.S. and Ph.D. degrees in
computer science and engineering from Northwest-
ern Polytechnical University, Xi’an, China, in 1988
and 1993, respectively. He is now a Full Profes-
sor with the Department of Computer Science and
Technology, Tsinghua University, Beijing, China.
His current research areas include high-performance
switches/routers, network processors, high-speed se-
curity, and greening the Internet. He has received
numerous awards from China, including the Dis-
tinguished Young Scholar of China and won the

inaugural Applied Network Research Prize sponsored by ISOC and IRTF
in 2011.

