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Abstract—Flow table capacity in programmable switches is
constrained due to the limited on-chip hardware resource. The
current mainstream approach is to cache only the popular
rules in hardware. By taking advantage of traffic locality, the
majority of packets can be forwarded directly after matching
the rules cached in hardware and the remaining missed packets
are handled by software that accommodates the full flow table.
Existing works focus on selecting the cache entries for a single-
stage flow table to achieve a high cache hit-rate, which cannot
adapt to multi-stage flow tables. Due to hardware constraints as
well as service requirements, it is often necessary to decompose
a single-stage flow table to a multi-stage flow table or directly
create multiple stages of tables in hardware. For the first
time, we abstract and model the multi-stage flow table caching
problem and prove the NP-hardness of the Optimal Multi-stage
Flow table Caching (OMFC). Further, we propose a Greedy
Caching Algorithm (GCA) for OMFC, which considers both the
rule popularity across multiple stages of flow tables and entry
popularity within the same stage of flow table when determining
the content and size of the multi-stage flow tables. The simulation
results show that GCA achieves a 10∼30% higher cache hit-rate
than the existing algorithms.

I. INTRODUCTION

Software-Defined Networking (SDN) [1] endows networks

with a high level of flexibility and programmability by the

separation of data plane and control plane. The data plane

is responsible for processing and forwarding packets based

on the rules in flow tables installed by the control plane. As

an indispensable component of SDN routers and switches,

flow tables play the roles beyond the conventional Access

Control List (ACL) and Firewall. For example, cloud providers

use flow tables for communication between different Virtual

Private Clouds (VPCs) or between VPC and the enterprise’s

local data center [2], [3], Network Telemetry uses a flow table

to filter specific packets for traffic measurement [4], and Load

Balancing uses a flow table to classify the packets [3].

With the fast growth of network throughput, now in the

magnitude of terabits per second per device, the flow table

matching process needs to be fast enough to sustain the line-

speed packet processing, entailing the use of hardware (e.g.,

programmable ASIC, FPGA) to implement flow tables. At
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Fig. 1. Flow table for VPC-to-VPC communication in PGW.

present, the mainstream programmable ASICs include Intel

Tofino [5], Broadcom Trident [6], and Cisco SiliconOne [7],

all of which use on-chip TCAM and SRAM for flow tables.

However, the limited on-chip hardware resource (e.g.,

SRAM and TCAM) usually cannot hold all the rules of the

flow tables. At the upper end, the hardware-based flow table

can afford around ten thousand rules [8], while the application

may require a flow table to support millions or even tens

of millions of rules. For example, in China Mobile eCloud

(CMCloud), VPCs can hold up to 100K Virtual Machines

(VMs) and a VPC needs to communicate with up to 128

other VPCs. Therefore, to support the VPC-to-VPC commu-

nication, as shown in Fig. 1(a), the cloud Peering GateWay

(PGW) needs to hold up to 128×100K rules in the form of

“<(source)VNI,VM IP>→<(destination)VNI,NH>”, where

VNI uniquely identifies the VPC, VM IP indicates the IP ad-

dress of the destination VM (i.e., Overlay), and NH represents

the next hop to the destination VM (i.e., Underlay). In other

cases, network devices may need to accommodate multiple

services in a hyper-converged manner to save hardware costs

and deployment footprints, where multiple stages of tables

representing different services are installed into the same

network device, occupying different pipeline stages [2].

With the imminent end of Moore’s Law [9], the limited

flow table capacity on a single chip can only be compensated

by the better use of available hardware resource through

flow table compression and caching. In the past two decades,

many algorithms (e.g., TCAM Razor [10]) have been proposed

to reduce the size of flow tables while ensuring semantic

equivalence. These algorithms require complex pre-processing

on the original flow table, making the flow table update
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process complicated and slow after compression. Moreover,

such methods can only alleviate but cannot eliminate the gap

between the hardware resource and flow table size.

In recent years, flow table caching becomes more popular.

The key idea is to use the limited hardware as a high-speed

cache on the fast path to hold only a small subset of flow

table rules. Those packets that cannot find a matching rule

in hardware are punted to the slow path (e.g., Open vSwitch

(OVS) [11] in the control CPU) for further processing. The

rationale of this approach comes from the observation that

real-world traffic presents a strongly skewed distribution [12],

i.e., the popular rules matched by the majority packets at any

time only account for a small subset of the flow table. If we

keep only the popular rules in hardware, a much larger rule

table can be supported without compromising the throughput.

Existing flow table caching schemes mainly focus on the

methods to pick the caching rules from one flow table to

achieve the high cache hit-rate under the restriction of rule

dependencies [8]. Such methods require that a popular rule r

to be cached along with the rules overlapping with r to avoid

mismatch, regardless of the popularity of those overlapping

rules. In fact, we analyzed four types of CMCloud gateways

implemented with programmable ASICs and found that the

rule dependency exists in less than 10% of the flow tables. On

the one hand, most of the flow tables are Exact Matching (EM)

which ensures that rule dependency cannot occur. On the other

hand, for the flow table that has the Longest Prefix Matching

(LPM) or range matching (RM) fields, there is usually an EM

field that prevents rules from overlapping (e.g., VNI).

A single flow table may be decomposed into a multi-stage

flow table. These flow tables form a logical table chain. The

match in the first i stages leads to the search in the (i+1)-
stage flow table. Only when all the stages are matched, a

rule is matched. If a flow is processed directly in hardware,

it means the k entries of the rule the flow matches are all

cached. There are three reasons for using the multi-stage flow

tables (explained in Section II): (1) reducing flow table size,

(2) simplifying flow table update, and (3) adapting to hardware

limitations. For multi-stage flow table caching, we need to

determine the cache content for each stage of the flow table.

If each stage is considered independently (i.e., cache the top

matched partial rules in each stage of the flow table), the

cache hit-rate is not optimal. Interestingly, caching only the

decomposing results of the top-matched rules leads to sub-

optimal results too. In fact, the cache content for the multi-

stage flow table should be considered jointly, since a caching

entry can be shared by multiple rules.

To the best of our knowledge, we are the first to analyze the

multi-stage flow table caching problem and provide an efficient

solution. We not only prove the NP-hardness of the problem of

the Optimal Multi-stage Flow table Caching (OMFC), but also

propose a greedy algorithm to optimize the hit-rate for multi-

stage flow table caching. Our contributions are as follows.

• We introduce the concept of Entry Sharing Graph (ESG)

to abstract the multi-stage flow table, which reflects the

popularity of entries and the combinations of entries.

• We prove the NP-hardness of OMFC by reduction from

a well-known problem proved to be NP-hard, indicating

the impossibility of finding the optimal solution for multi-

stage flow table caching in polynomial time.

• We propose a Greedy Caching Algorithm (GCA) for the

sub-optimal solution for the problem of OMFC. GCA can

judge whether an entry is worth caching by considering

both rule popularity and entry popularity. GCA processes

all stages of the flow table jointly and determines the

cache size and content for each stage simultaneously. The

simulation results show that GCA achieves a 10∼30%

higher cache hit-rate than the state-of-the-art solutions.

The remainder of the paper is organized as follows. Sec-

tion II provides the background. Section III discusses the

related works. Section IV analyzes the problem of OMFC

in theory. Section V describes the approximation algorithm

GCA for OMFC. Section VI presents the implementation and

evaluation. Finally, Section VII concludes the work.

II. BACKGROUND

In this section, we first introduce the basis of flow table

caching. Then we introduce the concept and motivation of

decomposing a single flow table into a multi-stage flow table.

A. Flow Table Caching

As the gap between hardware resource and flow table

size becomes larger, flow table caching becomes increasingly

important to solve the problem of high-speed matching on

large flow tables, thanks to the strong temporal locality and

spatial locality of the network traffic.

The temporal locality is reflected in that the traffic of a few

elephant flows dominates the total traffic in a relatively short

period of time. The spatial locality is reflected in that the traffic

does not evenly match every flow table rule, and most traffic

matches only a few flow table rules. As reported in [13], the

accumulated traffic of the top 1% of flows accounts for more

than 70% of the total traffic for a one-minute trace; meanwhile,

more than 100K flows match only 1K route prefixes in a table

with 760K prefixes.

A flow table cache has a different refresh pattern from a

classic cache in which an immediate cache replacement is done

when a cache miss happens. Due to the slow and complex

update process of the hardware-based (especially TCAM) flow

table [14], flow table caching generally determines caching

rules based on the rule matching results over a period of time

(e.g., rule’s popularity [15]) as well as the update cost [16].

B. Flow Table Decomposing

There are three reasons for producing multi-stage flow

tables: (1) reducing flow table size, (2) simplifying flow table

update, and (3) adapting to hardware limitations.

A single-stage flow table uses the key covering all the

matching fields (e.g., microflow in the OVS and flow table

in OpenFlow 1.0 [17]). However, when more and more fields

are involved in a flow table, the key size becomes too wide

to fit in existing hardware, and the table size explodes due
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to the cross-product effect of the rules. Decomposing the

single-stage flow table into a multi-stage flow table can greatly

reduce the flow table size, because not only each stage has a

narrower key but also the overall number of entries in all the

stages is much smaller than the original table size [18]. Take

Fig. 1(b) as an example, when implementing PGW, CMCloud

first uses a small LPM flow table in the form of “<VNI,

VM IP>→ <VNI>” to find the VPC where the destination

VM is located, and then uses the second stage flow table in

the form of “<VNI, VM IP> → <NH>” to find the next

hop information. In this way, the size of the second stage flow

table is reduced from 128×100K to 100K, since each entry of

the second stage flow table is shared by up to 128 entries of

the first stage flow table.

The multi-stage flow table also simplifies the update process

when the rules change. As shown in Fig. 1, when the VM

with the IP address 10.0.3.1 migrates and the corresponding

NH changes from 192.168.1.2 to 192.168.1.4, the single-stage

flow table in Fig. 1(a) needs to modify 3 rules for routing

to this VM, while the two-stage flow table in Fig. 1(b) only

needs to modify a single entry in the second stage flow table.

In some cases, flow table decomposition is required to match

hardware limitations. For example, the number of operations

(e.g., modify packet headers and write/read registers) that can

be executed after a flow table match (i.e., stage) is limited [5],

so it is sometimes necessary to convert a single-stage flow

table which covers many matching fields and executes many

actions into a multi-stage flow table, so that each stage only

covers a subset of fields and performs limited operations. As

shown in Fig. 1(b), modifying the packet header VNI and

outer destination IP address recorded in NH are separately

executed in the first and the second flow table. Of course, flow

table decomposing may not achieve positive returns in every

circumstance and its benefit is subject to the decomposing

strategy and the flow table features such as key size and width.

III. RELATED WORK

In recent years, with the large-scale deployment of SDN

in cloud networks, the size of flow tables has far exceeded

what the hardware resource can support. Some works [10],

[19] tried to narrow the gap between flow table size and

hardware capacity by compressing the flow tables. These

schemes reduce the average hardware resource needed for

storing a flow table rule or hash long matching keys into

shorter ones, but fail to solve the problem fundamentally.

More and more researchers make use of capacity-limited

hardware as a high-speed cache of a large flow table. Some

works are about caching rules of EM flow tables, and most

of the works are devoted to guaranteeing rule dependency and

achieving a high cache hit-rate when caching LPM or RM flow

tables [20]. CacheFlow [8] applies two methods, Cover-Set

and Dependent-Set, to select the caching rules according to the

popularity of the rules. Based on the idea of CacheFlow, some

works [15], [16] design more complex algorithms to further

improve the cache hit-rate or exploit the trade-off between

cache hit-rate and cache refresh cost.

The above works all aim at caching for a single-stage flow

table and do not adapt to a multi-stage flow table well. For a

multi-stage flow table, high cache hit-rate at each stage does

not necessarily imply high cache hit-rate of the overall scheme.

PipeCache [21] is the only work for multi-stage flow table

caching. It simply disperses the caching rules into multiple

stages of flow tables in order to reduce hardware resource

consumption. PipeCache inherits the method of CacheFlow to

maintain rule dependency while evicting and caching rules.

However, PipeCache evicts old rules and issues new rules

every time cache misses occur and does not make use of rule

popularity or entry popularity to select the caching content,

resulting in high update frequency. Moreover, PipeCache does

not consider the optimal assignment of the limited hardware

resource to a multi-stage flow table.

IV. OPTIMAL MULTI-STAGE FLOW TABLE CACHING

In this section, we first abstract and model the multi-stage

flow table caching problem, then consider the factors when

designing caching algorithms, and finally prove the optimal

caching of a multi-stage flow table is an NP-hard problem.

A. Problem Statement

A flow table F comprises a set of entries, and each entry e

is represented by three attributes: priority, field specification,

and action. If a packet p matches the field specification of

one or more entries of F , p should execute the action of the

matched entry with the highest priority.

F can be decomposed into k stages of sub flow tables,

F0, ..., Fk−1, which consist of n0, ..., nk−1 entries, respec-

tively. A rule r is the combination of one entry from each

stage (i.e., the i-th part of r, r[i], is from Fi for 0 ≤ i < k).

The total number of rules n is at most
∏k−1

i=0 ni, and an entry

in each stage can be shared by multiple rules.

When caching a rule r in hardware (e.g., TCAM and

SRAM), the k entries of r must be separately cached into the

corresponding k sub flow tables in hardware. When looking

up the k tables sequentially, if p matches no entry in the i-th

flow table, a cache miss happens. The subsequent matching

process is interrupted and p is sent to the slow path for the

complete table lookup. The problem of the optimal multi-stage

flow table caching can be described as follows.

OMFC: for n rules which are the combinations of entries

of the k-stage flow tables F0, ..., Fk−1, given the number of

matched packets of each rule during a period of time and the

hardware resource m, identify the entries to cache for each

flow table so as to maximize the number of packets that match

a rule in hardware, i.e., achieve the highest cache hit-rate.

B. Theoretical Analysis

A straightforward solution is to cache the entries of the

rules that match the most packets. In such a case, the content

of every flow table can be specified together. The resource that

should be allocated to each stage of the flow table can also

be inferred from the statistics of the popular rules. However,

this approach does not take into account the fact that an entry
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may be shared by multiple rules and the entries of the most

popular rules are not necessarily the most popular entries.

Another solution exists along this line of thinking. Instead

of selecting entries according to the rule popularity, we can

process the sub flow tables separately and select the most

popular entries of each sub flow table to cache. However, the

popular entries of different sub flow tables do not necessarily

correspond to the same set of rules. Since a miss in any sub

flow table means a cache miss, such a method cannot guarantee

the best result. Moreover, this method needs to statically

specify the resource allocated to each stage of the flow table,

which may further deviate from the optimal solution.

C. NP-hardness Proof

Through the above discussion we can see that for the multi-

stage flow table caching, the popularity of both rules and

entries should be considered. In fact, the problem of OMFC

is NP-hard and cannot be solved in polynomial time.

Theorem 1. The problem of OMFC is NP-hard.

Proof. The NP-hardness of the problem of OMFC can be

proved by a reduction from an equivalent NP-hard problem,

the densest k-subgraph problem on the bipartite graph (DkS)

[22]. The problem of DkS is formulated as follows.

DkS: Given an undirected graph composed of two disjoint

sets U and V and no two vertices within the same set are

adjacent, to find the subgraph with exactly k vertices such

that the number of edges in the subgraph is maximal.

For a given instance of DkS, we construct an instance for

OMFC in the following manner in polynomial time. Each

vertex u ∈ U or v ∈ V is mapped to a unique entry

that consumes one unit of hardware resource. Thus, U and

V correspond to the first and the second stage flow table,

respectively; each edge between U and V corresponds to a

rule consisting of the two entries corresponding to its two

endpoints, the aim of finding the subgraph with exactly k

vertices such that the number of edges in the unweighted

subgraph is maximal is then transformed to find the k entries

such that the hit-rate after caching them is maximal, in which

all rules forward the same number of packets.

If the problem of OMFC can be solved in polynomial time,

i.e., we can find the k entries leading to the maximized cache

hit rate in polynomial time, since the rules’ popularity is the

same and each rule corresponds to an edge, we can find

the densest k-subgraph and the problem of DkS is solved

in polynomial time, contradicting with the NP-hardness of

DkS. Therefore, the problem of OMFC cannot be solved in

polynomial time and its NP-hardness is proved. ■

V. APPROXIMATION ALGORITHM FOR OMFC

In this section, we first introduce the concept of the Entry

Sharing Graph (ESG). Then, we describe how to use the ESG

to estimate the hardware resource allocated for each flow table.

After that, we show how to calculate the rule cache profit while

taking the entry popularity into account. Finally, we explain

how to specify the entries to cache.

TABLE I
A TYPICAL 3-STAGE FLOW TABLE

Rule
Specification

Counter Profit
F1 F2 F3

r1 e
1
1 e

2
1 e

3
2 7 7 +

2
8

r2 e
1
2 e

2
3 e

3
1 7 7 +

13
12

+
8
6
+

5
8

r3 e
1
2 e

2
3 e

3
3 6 6 +

14
12

+
9
6
+

4
8

r4 e
1
2 e

2
2 e

3
3 4 4 +

16
12

+
6
8

r5 e
1
2 e

2
4 e

3
1 3 3 +

17
12

+
9
8

r6 e
1
1 e

2
3 e

3
1 2 2 +

7
12

+
13
6

+
10
8
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e1

1

e1

1
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2
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2
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2
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2
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2
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2
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e4

2

e4

2
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3

e1
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e2

3
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3
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3
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3

e3

3

e3

3

4

13

3
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4

6
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2

Fig. 2. The ESG of the flow table in Table I.

A. Construction of ESG

For a k-stage flow table, we map it into the ESG in the

following manner. We abstract each flow table entry into

a unique graph vertex and add k-1 directed edges between

the k vertices corresponding to each rule, where the edge

always points from the vertex corresponding to the i-stage flow

table pointing to the (i+1)-stage flow table. Meanwhile, the

entry/vertex counter value is equal to the sum of the counter

values of the rules passing through it.

Fig. 2 shows the ESG of the flow table in Table I. As shown

in Fig. 2, the entry e31 is shared by the rules r2, r5, and r6
whose counter values are 7, 3, and 2, respectively, the counter

value of e31 is therefore 12.

B. Cache Profit Calculation

When caching a rule r, we should not only focus on the

counter of the r itself, which indicates the least contribution

to the cache hit-rate; but also pay attention to the counter

values of the k entries of r.

Assume r.cnt and r[i].cnt represent the counter values of r

and its i-th entry r[i], the higher the value of r[i].cnt - r.cnt,

the higher the concomitant profit of caching the entry r[i].
Therefore, we define r’s cache profit r.pf as follows.

r.pf = r.cnt+

k−1∑

i=0

r[i].cnt− r.cnt
∏i−1

j=0 size(Fj)
∏k−1

j=i+1 size(Fj)
(1)

Where size(Fj) represents the number of entries in the j-th

stage flow table. c =
∏i−1

j=0 size(Fj)
∏k−1

j=i+1 size(Fj) refers

to the maximum number of rules when the i-th entry r[i] is

determined.
r[i].cnt−r.cnt

c
is the average profit of caching r[i].

In fact, 1
c

can be regarded as the effective coefficient of the
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Algorithm 1: Construct Entry Sharing Graph

1 Function ConstructESG(ft, k)
2 G = (V,E), nr = ft.rules.size()
3 for (i = 0; i < nr; i = i+ 1) do
4 r = ft.rules[i]
5 for (j = 0; j < k; j = j + 1) do
6 e = r[j]
7 if e in V then
8 V (e).cnt = V (e).cnt+ r.cnt

9 else
10 V.add(e), V (e).cnt = r.cnt

11 for (j = 0; j < k; j = j + 1) do
12 ej = r[j], ej+1 = r[j + 1]
13 if V (ej) → V (ej+1) /∈ E then
14 E.add(V [ej ] → V [ej+1])

15 return G

Algorithm 2: Calculate Cache Profit

1 Function CalculateCP(ft, k,G)
2 nr = ft.rules.size()
3 for (i = 0; i < nr; i = i+ 1) do
4 r = ft.rules[i], r.pf = r.cnt
5 for (j = 0; j < k; j = j + 1) do
6 e = r[j]

7 r.pf = r.pf + V (e).cnt−r.cnt
∏j−1

q=0
size(Fq)

∏k−1

q=j+1
size(Fq)

8 return ft

profit of the entry, because caching r[i] cannot guarantee that

all rules containing it will be cached together.

Table I shows the cache profit of the rules r1∼r6. We

take r5 as an example to illustrate the calculation process of

r5.pf . First, r5.pf should be added with its counter value

r5.cnt = 3, which indicates the minimum number of packets

that match the hardware flow table after r5 is cached. Then

we pay attention to the entry sharing profit. For r5’s first entry

e12, since e12.cnt = 20 > r5.cnt, meaning r5 shares e12 with

other rules, therefore, we add the concomitant profit of caching

the entry e12, which should be 20−3
3×4 according to Equation 1.

The concomitant profit of e31 when caching r5 is 12−3
2×4 by

using the same method. As for r5’s second entry e24, since

e24.cnt = r5.cnt, which means r5 does not share e24 with any

other rules, we do not need to calculate its cache profit.

C. Greedy Entry Selection

After the cache profit of each rule is calculated, the next step

is to specify the cache content of each flow table. We apply the

following greedy idea to select the rules to be cached under

the constraints of total resource: we always select the most

profitable rule that the hardware flow table can accommodate

among the uncached rules. When identifying a rule r to cache,

we see if its every entry has been cached. If and only if the i-th

entry r[i] has not been cached, we assign Fi.width hardware

resource to the i-th flow table, where Fi.width represents the

hardware cost of a single entry of the i-th flow table.
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1
e2

1
e2

1
e3

2
e3

2
e3

2

e2

2
e2

2
e2

2
e3

3
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3
e3

3

e1

3
e1

3
e1

3

1st stage 2nd stage 3rd stage 

Total hardware resource

11 22 33

44
55

Fig. 3. The process of greedy entry selection.

We take the example in Table I to illustrate the entry

selection process. Assume that the total hardware resource is

5 and each entry of the three flow tables consumes 1 hardware

resource, Fig. 3 shows the content of every flow table after the

entry selection process.

Algorithm 3: Greedy Entry Selection

1 Function GreedyES(rules,G,m)
2 rules.sort(>, r.pf)
3 nr = rules.size()
4 for (i = 0; i < nr; i = i+ 1) do
5 curCost = 0
6 for (j = 1; j < k; j = j + 1) do
7 e = rules[i][j]
8 if V (e).cached == False then
9 curCost = curCost+ Fj .width

10 if curCost <= m then
11 for (j = 1; j < k; j = j + 1) do
12 e = rules[i][j]
13 if V (e).cached == False then
14 Fj .addEntry(e)
15 V (e).cached = True

First, the rules in Table I are sorted in the decreas-

ing order of their cache profit and the results are <

r2, r3, r1, r4, r6, r5 >. Second, we process the first rule r2.

Since none of its three entries are cached, caching r2 requires 3

hardware resources for {e12, e
2
3, e

3
1} and the available hardware

resource is 2 after that. Third, we process the next rule

r3. Since the entries {e12, e
2
3} of r3 have been cached when

caching r2, caching r3 requires only 1 hardware resource for

e33 and the left hardware resource is 1 after that. Forth, we

process the rule r1. Since all entries {e11, e
2
1, e

3
2} of r1 are

not cached, caching r2 requires 3 hardware resources but the

available hardware resource is only 1, therefore, we do not

cache r1. Fifth, we process the rule r4. Since only the entry

e22 of r4 is not cached, caching r4 requires 1 hardware resource

and all the hardware resource is consumed.

Through the above selection process, not only the size of

each flow table is determined, but also the contents of the three

flow tables <F1, F2, F3> are specified, which stores {e12},

{e23, e
2
2}, and {e31, e

3
3}, respectively. According to Table I,

we can see that the cache hit-rate is 17
29 . If selecting the

rules to cache only by their counter values, as shown in
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Table I, <F1, F2, F3> will store {e11}, {e21, e
2
3}, and {e32, e

3
1},

respectively, and the corresponding cache hit-rate is only 9
29 .

If selecting the entry to cache only by their counter values, as

shown in Table I, <F1, F2, F3> will store {e12, e
1
1}, {e23}, and

{e31, e
3
3}, respectively, and the corresponding cache hit-rate is

only 15
29 .

Note that although the above method is applicable when

the total resource is given and the resource assigned to each

flow table is undetermined, it can still be used when the size

of each flow table is given. When judging whether a rule r

can be cached, it is necessary to determine whether each flow

table has enough space to store r’s corresponding entry if it

is not cached until now.

VI. IMPLEMENTATION AND EVALUATION

A. Experiment Setup

We choose CacheFlow as the representative for the single

stage flow table caching algorithms. Specifically, CacheFlow

caches rules in a single-stage flow table and does not make

full use of the entry sharing circumstances between different

rules. Since there is no rule dependency in our experimental

setting, CacheFlow chooses the rules to cache only according

to their counter values. We also choose PipeCache, the only

existing work for multi-stage flow table caching, to make

the comparison. Note that PipeCache evicts old rules and

caches new rules every time cache misses occur, resulting

in unacceptable update frequency. PipeCache is modified to

adopt the update strategy of CacheFlow in each stage of the

flow table. All the algorithms are implemented in C++ and

compiled by g++ with -O2 optimization. We run them on

a commodity server with the Ubuntu 16.04-LTS operating

system.

B. Dataset

It is difficult to access real-world multi-stage flow tables

and the corresponding traffics due to security and privacy

concerns, therefore, as a convention, we resort to ClassBench-

ng [23] to generate synthetic ones bearing the characteristics

matching the real-world datasets. However, ClassBench-ng

only generates rules and traffics for a single-stage flow table,

which cannot be directly used to test the multi-stage flow table

caching algorithm. On the other hand, the exact method the

flow table is decomposed (e.g., how many stages and which

fields are included in each stage) is related to the flow table

properties (e.g., rule popularity and entry sharing rate) and the

type of hardware. Therefore, given the expected number of

flow table rules nr, the number of the stages of flow tables k,

and the number of entries of each stage of flow table n0∼nk−1,

we first use ClassBench-ng to generate the flow tables, then

we use it again to generate the corresponding traffics, next

we calculate the counter values of the nr rules, finally, we

randomly choose nr combinations from the entries of the k-

stage flow tables as nr rules. In this way, the contained entries

and the counter values of each rule can be specified.

The datasets used for algorithm comparison are summarized

in Table II. Unless otherwise mentioned, the number of the

TABLE II
FLOW TABLES AND TRAFFICS USED FOR PERFORMANCE EVALUATION

Type Source Rule # Stage # Packet #

ACL ClassBench-ng ∼40K 3 ∼ 6 7.6 × 105

Firewall ClassBench-ng ∼40K 3 ∼ 6 5.0 × 105

IP Chain ClassBench-ng ∼40K 3 ∼ 6 2.1 × 106

Openflow ClassBench-ng ∼40K 3 ∼ 6 1.2 × 106

stages of flow tables is set to 3, the number of rules is

set to 40K and the hardware resource can hold 2% of the

total rules, the number of entries per flow table is set to

40K×0.01, 40K×0.02, and 40K×0.03, respectively. To test

the algorithms’ scalability and their sensitivity to different

parameters, we vary the rule table type, flow table size, and

cache size, respectively.

C. Experimental Results
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Fig. 4. The cache hit-rate on different flow tables.

Cache hit-rate. Fig. 4 shows the cache hit-rate of the

algorithms on different types of flow tables. As shown in

Fig. 4, on the four types of flow tables, CacheFlow achieves a

much lower cache hit-rate than PipeCache and GCA, around

27% and 35% lower than PipeCache and GCA, respectively.

This is because CacheFlow caches a rule in a single flow table

while PipeCache and GCA cache the three entries of a rule

to the corresponding stage of flow tables, in which an entry

can be shared by multiple rules. Meanwhile, Fig. 4 shows

that GCA achieves about a 10% higher cache hit-rate than

PipeCache. On the one hand, PipeCache does not propose

any strategy to select the entries to cache and directly caches

the entries of popular rules which are selected by CacheFlow.

GCA considers not only the popularity of rules but also the

popularity of entries when specifying the cache contents. On

the other hand, GCA can dynamically assign the hardware

resource to the different stages of flow tables, which are the

same and proportional to the size of software flow tables for

CacheFlow and PipeCache, respectively.
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Fig. 5. The cache hit-rate under different flow table sizes.
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Scalability on the number of rules. Fig. 5 shows the cache

hit-rate of the algorithms under different number of rules. Note

that although the number of rules nr ranges from 10K to 80K,

the hardware is always set to hold nr ×1.5% rules. As shown

in Fig. 5, on the ACL and FW flow tables, GCA consistently

beats CacheFlow and PipeCache for any number of rules,

which are about 30% and 10% improvement, respectively.
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Fig. 6. The cache hit-rate under different cache sizes.

Scalability on cache size. Fig. 6 shows the algorithm

performance when the cache size changes. The horizontal axis

represents the number of hardware resource, in which x%
indicates that the hardware resource can cache x% of the total

rules when caching them in a single flow table. We can see

from Fig. 6 that as the cache size increases, all the caching

algorithms show a higher cache hit-rate on both ACL and FW

flow tables. On the other hand, GCA always exhibits a better

performance than CacheFlow and PipeCache. When the cache

size is set to 1.8%, GCA achieves the 93% cache hit-rate on

FW flow tables, while CacheFlow and PipeCache are only

53% and 82%, respectively.
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Fig. 7. The cache hit-rate under different entry sharing ratios.

Scalability on entry sharing ratio. Fig. 7 shows the algo-

rithm performance when the entry sharing ratio varies. We set

the entry sharing ratio of the first two stages of the three-stage

flow table at 1% and 2%, respectively, the entry sharing ratio of

the last stage ranges from 1% to 2%. As shown in Fig. 7, with

the increasing of the entry sharing ratio, i.e., the probability of

sharing common entries between rules reduces, the cache hit-

rate of PipeCache and GCA decreases. Meanwhile, CacheFlow

is stable because it does not make use of entry sharing to

improve the cache hit rate.

Scalability on flow table stages. Fig. 8 shows the perfor-

mance of the algorithms under different number of flow table

stages. Since CacheFlow is not affected by the number of

stages of the flow table, so its performance is stable when the

latter one changes. The cache hit-rate of GCA and PipeCache

decreases when the number of the stages of the flow table

increases because cache hit requires matching an entry in every

stage of the flow table.
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Fig. 8. Cache hit-rate under different number of stages.

VII. CONCLUSION

This paper abstracts and models the problem of the multi-

stage flow table caching and proves the NP-hardness of

optimal multi-stage flow table caching for the first time. The

proposed approximation algorithm GCA adopts the greedy

idea and achieves a 10∼30% higher cache hit-rate than the

state-of-the-art solutions with the help of considering both the

rule popularity and entry popularity and adaptive hardware

resource assignment for different flow tables.
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