
Ultra-Fast Bloom Filters using SIMD Techniques
Jianyuan Lu†, Ying Wan†, Yang Li†, Chuwen Zhang†, Huichen Dai†, Yi Wang§, Gong Zhang§ and Bin Liu†

† Tsinghua National Laboratory for Information Science and Technology
† Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

§ Huawei Future Network Theory Lab

Abstract—The network link speed is increasing at an alarming
rate, which requires all network functions on routers/switches
to keep pace. Bloom filter is a widely-used membership check
data structure in network applications. It also faces the urgent
demand of improving the performance in membership check
speed. To this end, this paper proposes a new Bloom filter
variant called Ultra-Fast Bloom Filters, by leveraging the SIMD
techniques. We make three improvements for the UFBF to
accelerate the membership check speed. First, we develop a novel
hash computation algorithm which can compute multiple hash
functions in parallel with the use of SIMD instructions. Second,
we change a Bloom filter’s bit-test process from sequential to
parallel. Third, we increase the cache efficiency of membership
check by encoding an element’s information to a small block
which can easily fit into a cache-line. Both theoretical analysis
and extensive simulations show that the UFBF greatly exceeds
the state-of-the-art Bloom filter variants on membership check
speed.

I. INTRODUCTION

Bloom filters are space-efficient randomized data structures
for membership check [1]. Due to simplicity and efficiency,
Bloom filters (and their variants) have been applied in a
wide range of network applications [2, 3]. The trend for
these network applications is that they will run in higher and
higher speed network environment. The 40GE and 100GE
ports for routers’ line-cards have already been commercialized
and deployed [4]. High-end core routers such as Cisco CRS-
X [5] and Huawei NE9000 [6] both support 400 Gbps line-
card (a line-card can accommodate several high-speed ports).
The development of high-speed network requires all network
functions to run at line rate, leaving a very limited processing
delay for network devices to process a packet. For example,
a 40GE port needs to achieve 60Mpps throughput, i.e., pro-
cessing a packet within 75 clock cycles for a state-of-the-art
4GHz CPU. Therefore, Bloom filters need to run extremely
fast in practice to avoid becoming the network applications’
performance bottleneck.

Most of the network applications assume Bloom filters have
no (or, tiny) cost for membership check. However, in fact,
it is not. A Bloom filter needs to compute k independent
hash functions and conduct the same number memory accesses
for an element’s membership check. On the one hand, the
hash functions in Bloom filters have computational cost. We

This work is sponsored by Huawei Innovation Research Program (HIRP),
NSFC (61602271, 61373143, 61432009), China Postdoctoral Science Foun-
dation (No. 2016M591182), the Specialized Research Fund for the Doctoral
Program of Higher Education of China (20130002110084). Corresponding
Author: Bin Liu (liub@tsinghua.edu.cn)

know that strong hash functions (e.g., MD5 and SHA-1) are
computation-intensive [7]. Though simple hash functions can
be the alternatives for Bloom filters [8], their computational
cost cannot be neglected. A test on our actual machine shows
that MurmurHash (a simple non-cryptographic hash function)
consumes 23 clock cycles on average for one hash compu-
tation. On the other hand, the memory accesses in Bloom
filters may cause several cache misses. Due to limited on-
chip cache size, most of the system data is stored on off-chip
storage (e.g., DRAM). In the worst case, k cache misses will
occur in one element’s membership check. A large amount
of cache misses will deteriorate the system performance to a
large extent. Systems which employ a large number of Bloom
filters [9] or use a large number of hash functions in one Bloom
filter [10], will experience more obvious computational cost
and memory access delay.

In this paper, we propose a new Bloom filter variant called
Ultra-Fast Bloom Filter (UFBF), which aims to improve a
Bloom filter’s membership check speed. The UFBF mainly
uses the SIMD1 techniques to accelerate the membership
check. The UFBF consists of a sequence of blocks. An
element’s information is encoded in a randomly selected block.
We make three optimizations for the UFBF to ensure it run
fast. First, we develop a novel hash computation algorithm
which can compute k hash functions in parallel. The hash
functions in UFBF originate from the same hash function
with different hash seeds. The parallel hash computation
algorithm initializes an SIMD register to these hash seeds,
and then operates them in parallel to get k hash values. The
UFBF reduces hash computation time to (approximate) 1/k of
standard Bloom filter. Second, UFBF changes the sequential
bit-test process to parallel bit-test process. The standard Bloom
filter has to test the membership bits one by one. However, the
UFBF can test the membership bits in parallel. To facilitate
the use of SIMD instructions in bit-test process, a block in
UFBF is divided into k consecutive words, and each word
is associated with one hash function. That is to say, a hash
function can only address its associated word. Third, the
UFBF improves the cache efficiency by encoding an element’s
information to a block. In practice, if the blocks are cache-
line size aligned and the block size divides the cache-line size,
only (at most) one cache miss could occur during an element’s

1Single Instruction Multiple Data (SIMD) instructions can operate multiple
operands in parallel. They are widely supported by general CPUs and
embedded CPUs. Take Intel CPU as an example. It supports MMX, SSE,
AVX, FMA, KNC, SVML etc, SIMD instruction sets [11].

978-1-5386-2704-4/17/$31.00 ©2017 IEEE

Authorized licensed use limited to: Tsinghua University. Downloaded on April 25,2021 at 03:34:47 UTC from IEEE Xplore. Restrictions apply.

membership check.
The remaining of the paper is organized as follows. Sec-

tion II surveys the related work. Section III details the UFBF
scheme and theoretical analysis. Section IV presents the
experimental results for performance evaluation. Section V
concludes the paper.

II. RELATED WORK

Bloom filter was introduced by Burton H. Bloom in
1970 [1], which is called Standard Bloom Filter (SBF) in
this paper. We assume the readers have the basic knowledge
of this data structure. Our work in this paper aims to build
fast Bloom filters by using SIMD techniques. A previous
work builds a vectorized implementation for probing Bloom
filters using SIMD techniques [12]. However, this work is
only an engineering implementation, lacking of theoretical
improvements. Several previous studies attempt to build fast
Bloom filters, which can be grouped into two categories:

1) Improving cache efficiency. One-Memory Bloom Filter
(OMBF) [13] improves the cache efficiency by restricting one
element’s hashing space to a word. A word is defined as
the communication bandwidth between the off-chip memory
and the processor in one memory access, e.g., 32 bits or 64
bits. OMBF effectively reduces (at most) k cache misses to
(at most) one cache miss in an element’s membership check.
Blocked Bloom Filter (BBF) [14] has a similar framework to
OMBF. The difference is that BBF consists of a sequence
of blocks (instead of words in OMBF). BBF restricts one
element’s hashing space to a block, and a block has a cache-
line size. A common cache-line size is 512 bits in modern
CPUs.

2) Reducing hash computational cost. Lu et al. [15] pro-
pose a Bloom filter variant, called One-Hashing Bloom Filter
(OHBF), to lower the hash computation overhead in Bloom
filters. An OHBF uses only one base hash function plus k mod-
ulo operations to implement a Bloom filter. Kirsh and Mitzen-
macher [16] propose Less Hashing Bloom Filter (LHBF)
which uses two base hash functions h1(x), h2(x) to implement
a Bloom filter. If more than two hash functions are needed,
LHBF mainly employs a form gi(x) = h1(x) + i ∗ h2(x) to
construct additional hash functions. The authors have proved
that LHBF has the same asymptotic false positive probability
as SBF. Song et al. introduce a simple method to produce k
hash values using O(log k) seed hash functions [17]. However,
the paper lacks theoretical analysis on the independence of the
additional synthetic hash functions.

III. ULTRA-FAST BLOOM FILTERS

A. Basic Data Structure

The UFBF is composed of a sequence of r blocks, and
each block has b bits. A block contains k consecutive words,
and each word has w bits. Apparently, b = k ∗ w. The basic
structure of UFBF is shown in Figure 1. A word means a
group of bits whose length equals to general registers’ bit-
length. For example, the length of general registers of modern
CPUs is 32-bit or 64-bit, which means a word has w = 32

(or 64) bits in practice. Note that a Bloom filter has m bits in
total. Therefore, we have m = r ∗ b = r ∗ k ∗ w.

m=r*b bits

w bits

word[1] word[2] …… word[k]

…… block[1]bit array

block

block[2] block[r-1] block[r]

b=k*w bits

Fig. 1. The basic structure of UFBF.

In the insertion process, an element’s information is encoded
in a randomly selected block. The insertion process is as
follows. UFBF first selects a block from the bit array using a
hash function h0. Then it selects k bits in the selected block
using k hash functions h1, h2, . . . , hk, and sets these bits to
ones. In fact, the hash function hi, 1 ≤ i ≤ k is associated
with word[i], and it can only address the bits in its associate
word. An insertion example of UFBF is shown in Figure 2,
where w = 4.

word[1] word[2] word[k]

e

h1 h2 hk

select a block

h0

1 0 0 0 0 1 0 0 …… 0 0 0 1

……

block[h0(key)]

Fig. 2. An example of the insertion process in UFBF.

The check process, checking if a given element belongs to
the encoded set, is similar to the insertion process. UFBF first
selects a block from the bit array using h0. Then it selects k
bits as the insertion process. If all the k bits are ones, then
UFBF returns a positive result (element in the set). Otherwise,
it returns a negative result (element not in the set).

B. The Parallel Hash Computation Algorithm

We develop a novel algorithm for UFBF to calculate k hash
functions in parallel with the use of SIMD instructions. The
hash computation algorithm in UFBF is designed to facilitate
the use of SIMD instructions. Although the SIMD instruction
sets are platform-dependent, we use a high-level abstract
description of these instructions to introduce our algorithm.

For better understanding, we define two naming rules in our
algorithms:
• vr {} means an SIMD register/variable.
• v {} means an SIMD operation/command.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 25,2021 at 03:34:47 UTC from IEEE Xplore. Restrictions apply.

Suppose the SIMD instructions can implement p pairs
arithmetic operations (i.e., add, sub, mul, etc) at the same time,
e.g., (z1, z2, . . . , zp) = (x1, x2, . . . , xp)+(y1, y2, . . . , yp). The
parameter p is determined by a specific SIMD instruction set.
For example, the Intel SSE instruction set can implement p = 4
pairs of 32-bit arithmetic operations, while the AVX instruction
set can implement p = 8 pairs of 32-bit arithmetic operations.

The hash computation algorithm in UFBF is shown in
Algorithm 1. This algorithm produces p hash values using the
same hash function with different initial seeds. It first loads p
seeds to an SIMD register vr seeds. Then it uses an SIMD-
version hash function v hashFunc to compute the hash values.
After it completes the computation, it stores the result from
an SIMD register vr val to memory. The SIMD-version hash
function is rewritten with the SIMD instructions according
to a traditional hash function. While the SIMD-version hash
function is related to a specific traditional hash function, we
do not show the algorithm for the v hashFunc. To guide the
rewrite rules, we show the main change from a traditional hash
function to its SIMD-version in Algorithm 2. The computation
process of a traditional hash function can be summarized as
follows: an initial seed encounters a sequence of arithmetic
operations, storing each step’s result to an intermediate vari-
able. While the SIMD-version can be summarized as that
p initial seeds encounter the same sequence of arithmetic
operations, storing each step’s results to an intermediate SIMD
variable. Therefore, the main change of an SIMD-version hash
computation is that it has to prepare the SIMD operation data
vr val ← v broadcast(a) and implement the corresponding
SIMD operation v op.

Algorithm 1: The parallel hash computation algorithm in
UFBF

1 seeds[p]← [seed1, seed2, . . . , seedp]
2 hashV als[p]← [0, 0, . . . , 0]
3 vr seeds← v load(seeds)
/* load the p seeds to an SIMD register */

4 vr val← v hashFunc(vr seeds)
/* implement the SIMD hash function which

takes p seeds and computes in parallel */

5 hashV als← v store(vr val)
/* store the p hash values to memory */

Algorithm 2: The main change from a traditional hash
function to its SIMD-version

1 val← val OP a
/* OP is a general arithmetic operation, val

stores the intermediate hash value */

⇓
1 vr a← v broadcast(a)
/* v_broadcast copy p copies of a to vr_a */

2 vr val← v OP(vr val, vr a)
/* v_OP is the SIMD-version of OP, vr_val

stores the intermediate p hash values */

C. Parallel Bit-Test in Membership Check

In the membership check process, standard Bloom filter
(and their variants) must test k bits sequentially, i.e., test
k bits one by one and return negative once encountered a
zero-bit. If zero-bit is not encountered at the end of this bit-
test process, return positive. In our UFBF, we change the
sequential bit-test process to parallel bit-test process, reducing
the complexity from O(k) to O(1). In order to achieve parallel
bit-test, we change the bloom filter data structure to a block-
word style (shown in Figure 1), which brings in parallelism for
membership check. The parallelism is reflected in that UFBF
encodes an element to k consecutive words (in a block), and
these words can be fetched and tested at the same time.

The membership check algorithm for UFBF is shown in
Algorithm 3. In this algorithm, the k membership bits are
tested in parallel. The k hash functions for membership check
are calculated in parallel using Algorithm 1. Actually, we make
an assumption here that k ≤ p, which means the p hash values
produced by Algorithm 1 can satisfy the Bloom filter’s hash
function need.

Algorithm 3: The membership check algorithm in UFBF

1 Function membershipCheck(element e)
2 loc← compute the block index of e
3 vr val← compute k hash values using Algorithm 1
4 vr a← v broadcast(1)
5 vr a← v shiftLeft(vr a, vr val)

/* v_shiftLeft shifts k words in vr_a
left in parallel by the amount
specified by vr_val */

6 vr b← v load(&block[loc])
7 vr b← v not(vr b)

/* v_not is bitwise NOT operation */

8 v test(vr a, vr b)
/* v_test is bitwise AND operation */

9 if zero-flag is set then
10 return positive
11 end
12 return negative
13 end

D. Cache Efficiency for Membership Check

The cache efficiency for membership check of UFBF is ex-
pected to far better than SBF. In SBF, an element’s information
is encoded in k arbitrary locations of the bit array, and at most
k cache misses could occur during one membership check
process. In UFBF, an element’s information is encoded in a
small block of the bit array , and a block can easily fit into
one cache-line of CPU cache.

Formally, we analyze the worst case cache misses in one
membership check of UFBF. In Theorem 1, we prove that only
one cache miss would occur in worst case in one membership
check process, if the block size divides the cache-line size
and the bit array is cache-line size aligned. In practice, the
size of cache-line is usually a power of 2, which means the

Authorized licensed use limited to: Tsinghua University. Downloaded on April 25,2021 at 03:34:47 UTC from IEEE Xplore. Restrictions apply.

block size should also be a power of 2 (Corollary 1). By
Corollary 2, the hash function number k should be a power
of 2, which suggests that k = 2, 4, 8, 16 etc. That is to say,
UFBF experiences better cache efficiency when k is a power
of 2 than when k is other values.

Theorem 1. Suppose the cache-line size is L. If the block size
satisfies b|L and the bit array is L-aligned, at most one cache
miss would occur in one membership check.

Proof by Contradiction. Suppose that more than one cache
miss occurs during one membership check. Denote the starting
and end address of the missed block as addr s, addr e.
Because b|L and the bit array is L-aligned, then ∃ s, i, j ∈ N
such that L = sb, addr s = iL+jb, addr e = iL+(j+1)b.
The supposition, more than one cache miss, means ∃ t ∈ N
such that addr s < tL < addr e. Substitute addr s, addr e,
we get iL + jb < tL < iL + (j + 1)b. Further, we get
isb + jb < tsb < isb + (j + 1)b. Simplify this formula and
we can get 0 < (t − i)s + j < 1. Apparently, (t − i)s + j is
an integer and we get a contradiction.

Corollary 1. Suppose the cache-line size L is a power of 2.
Then we can conclude that if b ≤ L, b is a power of 2, and the
bit array is L-aligned, at most one cache miss would occur
in one membership check.

Corollary 2. Suppose w is a power of 2. Then we can
conclude that if k = b

w ≤
L
w , k is a power of 2, and the

bit array is L-aligned, at most one cache miss would occur
in one membership check.

E. False Positive Probability Analysis

The false positive probability of our proposed UFBF, fu,
is analyzed as follows. Assume we use fully random hash
functions. Let F be the false positive event that an element
e′, which is not in the set, is mistakenly regarded as in the set.
To check the membership of e′, it is hashed to k words in a
membership block, and each word selects one bit. Suppose x
elements have been inserted to this membership block, where
x ∈ [0, n]. Then a bit is set in a word with probability 1−(1−
1
w)x. Let X be the random variable that represents how many
elements have been inserted to a block. Then the conditional
probability for F to occur when X = x is:

Pr{F|X = x} =
(
1−

(
1− 1

w

)x)k

(1)

Obviously, X follows the binomial distribution, Bino(n, 1
r),

then we can get

Pr{X = x} =
(
n

x

)(
1

r

)x(
1− 1

r

)n−x

,∀ 0 ≤ x ≤ n (2)

Then, we can get the false positive probability of UFBF as:

fu = Pr{F} =
n∑

x=0

(Pr{X = x} · Pr{F|X = x})

=

n∑
x=0

(
n

x

)(
1

r

)x(
1− 1

r

)n−x(
1−

(
1− 1

w

)x)k (3)

It is difficult to compare the false positive probability of
UFBF and SBF directly using equations, therefore we make
some numerical calculations to find the trend. Table I presents
the theoretical false positive probability comparison between
SBF (fs) and UFBF (fu). We find that fu−fs

fs
nearly halves

if the word size (w) of UFBF changes from 32 to 64. From
the perspective of false positive probability, we prefer larger
word size for UFBF. It can be concluded from this table that
UFBF has higher false positive probability than SBF. However,
UFBF has extremely faster membership check speed than SBF
(shown in Section IV), which can compensate the higher false
positive drawback.

TABLE I
THEORETICAL FALSE POSITIVE PROBABILITY COMPARISON BETWEEN

SBF AND UFBF, n = 10000, k = 4

load factor fs
w = 32 w = 64

(n/m) fu
fu−fs

fs
fu

fu−fs
fs

0.02 3.49 e-5 1.39 e-4 2.98 7.98 e-5 1.28
0.04 4.78 e-4 1.02 e-3 1.14 7.35 e-4 0.54
0.06 2.07 e-3 3.44 e-3 0.66 2.73 e-3 0.32
0.08 5.62 e-3 8.11 e-3 0.44 6.85 e-3 0.22
0.10 1.18 e-2 1.56 e-2 0.32 1.37 e-2 0.16
0.12 2.11 e-2 2.62 e-2 0.24 2.37 e-2 0.12
0.14 3.38 e-2 4.01 e-2 0.19 3.70 e-2 0.09
0.16 4.99 e-2 5.75 e-2 0.15 5.37 e-2 0.08
0.18 6.94 e-2 7.78 e-2 0.12 7.36 e-2 0.06
0.20 9.20 e-2 1.01 e-1 0.10 9.69 e-2 0.05

IV. EVALUATION

We make several experiments to evaluate our proposed
UFBF using real-world Internet traces.

A. Experiment Setup

Platform: We implement the experiments on a commodity
server with Intel CPU Core i7-4790 (4 cores × 2 threads,
3.6 GHz). Each core of this CPU has independent L1 cache
(L1 D-Cache is 32 KBytes, L1 I-Cache is 32 KBytes) and L2
cache (256 KBytes). The 4 cores share L3 Cache (8 MBytes).
The cache-line size is 64-byte (512 bits). This server has
16GB DDR3 (1600 MHz) memory. This server runs Microsoft
Windows 7 64-bit operating system.

SIMD instructions: The Intel i7-4790 CPU supports sev-
eral SIMD instruction sets. We mainly use the AVX, AVX2
instruction sets in our experiments. Because AVX2 is a simple
extension of AVX, we use the term AVX to represent AVX, AVX2
in the following description if there is no confusion. These
two instruction sets can operate 16 256-bit registers [11]. AVX
can implement 8 32-bit signed/unsigned integer arithmetic
operations in parallel. Most of the AVX SIMD instructions
could be called using C/C++ style functions provided by Intel
Intrinsics Guide [18]. We use C/C++ programming language
to code our evaluation programs. The complier we use is gcc.
To use the AVX, AVX2 instruction sets, the special options -
mavx, -mavx2 are needed for gcc.

Datasets: We use the real-world Internet traces, obtained
from CAIDA [19], to evaluate the performance of UFBF. The

Authorized licensed use limited to: Tsinghua University. Downloaded on April 25,2021 at 03:34:47 UTC from IEEE Xplore. Restrictions apply.

trace is extracted from a backbone 10Gbps link and lasts 60
minutes. We use two datasets extracted from the traces for our
evaluation, as shown in Table II.

TABLE II
DATASETS USED IN THE FOLLOWING EXPERIMENTS

name data ID length # of items
dataset1 dst IPs 4 bytes 5 M
dataset2 flows 13 bytes 50 M

B. The Hash Computation Evaluation

To test the performance of the hash computation algo-
rithm in UFBF (Algorithm 1), we make two comparative
experiments. We use the traditional hash functions Mur-
murHash3 [20] and lookup3 [21] as the compared hash
functions. We set the hash value’s bit-width as 32-bit. Since
the AVX instruction set uses 256-bit registers, the hash com-
putation algorithm in UFBF can compute (at most) 8 hash
functions in parallel.

Figure 3 shows the evaluation results. We can find that the
lookup3 hash function consumes 23 clock cycles on average
for one hash computation. As the computation time is propor-
tional to the hash function number, a linear increasing trend oc-
curs for computing more hash functions. However, the SIMD-
version (using Algorithm 1) implementation of lookup3 has a
constant computation time when hash function number ranges
from 1 to 8. We find that lookup3-SIMD consumes 1.78 times
the time of lookup3 for computing one hash function. This
difference comes from two aspects. First, the SIMD-version
hash function has to use additional instructions to prepare the
data for SIMD registers. Second, an SIMD instruction usually
takes slightly more time compared to a corresponding common
instruction. We can conclude that the more hash functions
used, the more time we can reduce for SIMD-version hash
functions. The comparison of MurmurHash3 and its SIMD-
version has a similar result to lookup3.

 0

 50

 100

 150

 200

1 2 3 4 5 6 7 8

cl
oc

k
cy

cl
es

of hash functions

lookup3
lookup3-SIMD

 0

 50

 100

 150

 200

1 2 3 4 5 6 7 8

cl
oc

k
cy

cl
es

of hash functions

murmur
murmur-SIMD

Fig. 3. (Left) The run time comparison between MurmurHash3 hash function
and its SIMD-version; (Right) The run time comparison between lookup3 hash
function and its SIMD-version.

C. Membership Check Speed Evaluation

We compare three Bloom filters, SBF [1], OMBF [13], and
OHBF [15], with our proposed UFBF. OMBF and OHBF
are two state-of-the-art Bloom filter variants which attempt
to reduce the membership check overhead of Bloom filters.
OMBF attempts to reduce the memory overhead, while OHBF
mainly attempts to reduce the hash computation overhead. In

the experiments, negative check means checking an element
not in the set, while positive check means checking an element
in the set. We use MSPS (Millions Searches Per Second) as the
unit of membership check speed in the following experiments.
The bit array of Bloom filters is cache-line size aligned.

Figure 4 presents the membership check speed comparison
of four Bloom filters, SBF, OMBF, OHBF, and UFBF. We
can see that the check speed of SBF, OMBF, and OHBF
shows an decreasing trend. This is because SBF, OMBF, and
OHBF implement membership check using a sequential bit-
test process, and there are more membership bits to check
on average with the growth of k. While our UFBF presents
a (nearly) constant check speed in these experiments due to
parallel hash computation and parallel bit-test in membership
check. The small jitters of check speed in UFBF comes
from the different cache efficiency for different values of k
(discussed in Section III-D). For SBF, OMBF, and OHBF,
positive check has more membership bits to check (and more
hash computations correspondingly) on average than negative
check, therefore positive check is slower than negative check.
For UFBF, both positive check and negative check test all
membership bits in parallel, therefore positive check and
negative check have (nearly) the same speed. As the CPU’s
cache size (64 Mbits) is larger than Bloom filer bit arrays’
size (1 Mbits) and OMBF mainly aims to improve the cache
efficiency of Bloom filters, OMBF only has slightly faster
check speed than SBF in these experiments. As OHBF reduces
the hash computation overhead a lot and cache efficiency
is not a big issue in these experiments, OHBF has faster
membership check speed than SBF and OMBF. While UFBF
takes both hash computation overhead and cache efficiency
into consideration and improves the bit-test speed, UFBF has
the fastest membership check speed in the four Bloom filer
variants. When k = 8, UFBF doubles the membership check
speed than SBF in negative check, and it has four times the
membership check speed of SBF in positive check.

Figure 5 presents the negative and positive membership
check speed comparison of four Bloom filters, SBF, OMBF,
OHBF, and UFBF, when m varies. The L1, L2, and L3 CPU
cache sizes are annotated. We can see that the membership
check speed of the four Bloom filters is nearly constant
when the CPU has adequate cache (m < L2-Cache), and it
drops slowly when the CPU cache is not so adequate (L2-
Cache < m < L3-Cache). The membership check speed
drops quickly when the CPU cache is not enough (m > L3-
Cache) to accommodate the bit array. As UFBF improves the
cache efficiency in its design, it outperforms the other three
Bloom filters on membership check speed, whether the on-
chip memory is enough to accommodate the bit array or not.
Since OHBF’s design does not consider the cache efficiency,
its membership check speed drops sharply when the bit array
size (m) approaches the L3-Cache.

D. False Positive Evaluation

We make two experiments on false positive ratio evaluation.
Figure 6 presents the false positive ratio comparison between

Authorized licensed use limited to: Tsinghua University. Downloaded on April 25,2021 at 03:34:47 UTC from IEEE Xplore. Restrictions apply.

 10
 20
 30
 40
 50
 60
 70
 80
 90

 3 4 5 6 7 8

ch
ec

k
sp

ee
d

(M
S

P
S

)

k

UFBF
OHBF
OMBF

SBF

(a) dataset1, negative check

 10
 20
 30
 40
 50
 60
 70
 80
 90

 3 4 5 6 7 8

ch
ec

k
sp

ee
d

(M
S

P
S

)

k

UFBF
OHBF
OMBF

SBF

(b) dataset2, negative check

 10
 20
 30
 40
 50
 60
 70
 80
 90

 3 4 5 6 7 8

ch
ec

k
sp

ee
d

(M
S

P
S

)

k

UFBF
OHBF
OMBF

SBF

(c) dataset1, positive check

 10
 20
 30
 40
 50
 60
 70
 80
 90

 3 4 5 6 7 8

ch
ec

k
sp

ee
d

(M
S

P
S

)

k

UFBF
OHBF
OMBF

SBF

(d) dataset2, positive check

Fig. 4. The membership check speed of the four Bloom filters: SBF, OMBF, OHBF, and UFBF. MSPS represents millions searches per second. We set
n = 105,m = 106. The load factor is n

m
= 0.1. Each point in this figure is the mean of 1,000 experiments. We implement 1,000,000 queries in each

experiment.

 0

 10

 20

 30

 40

 50

 60

 70

 1x106 1x107 1x108

L1-Cache

L2-Cache

L3-Cachech
ec

k
sp

ee
d

(M
S

P
S

)

m

UFBF
OHBF
OMBF

SBF

 0

 10

 20

 30

 40

 50

 60

 70

 1x106 1x107 1x108

L1-Cache

L2-Cache

L3-Cache

ch
ec

k
sp

ee
d

(M
S

P
S

)

m

UFBF
OHBF
OMBF

SBF

Fig. 5. The negative (Left) and positive (Right) membership check speed of the four Bloom filters:
SBF, OMBF, OHBF, and UFBF. We set k = 8. The load factor is n

m
= 0.1. Each point in this figure

is the mean of 1,000 experiments. We implement 1,000,000 queries in each experiment.

10-5

10-4

10-3

10-2

10-1

 0 0.04 0.08 0.12 0.16 0.2

fa
ls

e
po

si
tiv

e

load factor (n/m)

theory
simulation-dataset1
simulation-dataset2

Fig. 6. The false positive ratio of UFBF, n =
10000, w = 4, k = 4. Each point in this figure is
the mean of 1,000 experiments.

theory and simulation results of UFBF. We can see that the two
simulation results on two datasets exactly match the theoretical
analysis, which validates the false positive probability analysis
of UFBF in Section III-E.

V. CONCLUSIONS

In this paper, we propose a new Bloom filter variant called
Ultra-Fast Bloom Filter (UFBF), which speeds up the member-
ship check process by the novel use of SIMD techniques. Since
SIMD instructions are widely supported by most of the modern
CPUs, our UFBF design has a very good application prospect.
Different with traditional Bloom filters, the UFBF computes
hash functions and implements bit-test process both in parallel.
The UFBF also improves cache efficiency by encoding an
element to a small block which can easily fit into a cache-
line. Numerical results show that the UFBF has a higher false
positive rate in most of the settings. However, compared to
its dramatical improvement in performance, the tradeoff is
absolutely worthwhile.

REFERENCES
[1] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable

Errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.
[2] A. Broder and M. Mitzenmacher, “Network Applications of Bloom

Filters: A Survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509,
2004.

[3] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and Practice
of Bloom Filters for Distributed Systems,” Communications Surveys &
Tutorials, vol. 14, no. 1, pp. 131–155, 2012.

[4] “Huawei launches world’s first end-to-end 100g solutions,”
http://pr.huawei.com/en/news/hw-062645-corporate-ran-wnm-ran
-wnp-ds-wisg-vs-win.htm#.WKgFdtV96Uk, 2017.

[5] “Cisco crs-x,” http://www.cisco.com/c/en/us/products/routers/carrier-rou
ting-system/index.html, 2017.

[6] “Huawei ne9000,” http://e.huawei.com/en/products/enterprise-networkin
g/routers/ne/ne9000, 2017.

[7] “Crypto++ 5.6.0 benchmarks,” http://www.cryptopp.com/benchmarks.ht
ml, 2017.

[8] M. Mitzenmacher and S. Vadhan, “Why simple hash functions work:
Exploiting the entropy in a data stream,” in SODA, 2008.

[9] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest Prefix
Matching Using Bloom Filters,” in ACM SIGCOMM, 2003.

[10] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood,
“Deep Packet Inspection Using Parallel Bloom Filters,” Micro, IEEE,
vol. 24, no. 1, pp. 52–61, 2004.

[11] “Intel 64 and ia-32 architectures software developer manuals,” https:
//software.intel.com/en-us/articles/intel-sdm, 2017.

[12] O. Polychroniou and K. A. Ross, “Vectorized bloom filters for advanced
simd processors,” in Proceedings of International Workshop on Data
Management on New Hardware, 2014.

[13] Y. Qiao, T. Li, and S. Chen, “One memory access bloom filters and
their generalization,” in IEEE INFOCOM, 2011.

[14] F. Putze, P. Sanders, and J. Singler, “Cache-, hash- and space-efficient
bloom filters,” in International Workshop on Experimental and Efficient
Algorithms, 2007.

[15] J. Lu, T. Yang, Y. Wang, H. Dai, L. Jin, H. Song, and B. Liu, “One-
hashing bloom filter,” in IEEE IWQoS, 2015.

[16] A. Kirsch and M. Mitzenmacher, “Less Hashing, Same Performance:
Building A Better Bloom Filter,” Random Structures & Algorithms,
vol. 33, no. 2, pp. 187–218, 2008.

[17] H. Song, F. Hao, M. Kodialam, and T. Lakshman, “IPv6 Lookups using
Distributed and Load Balanced Bloom Filters for 100gbps Core Router
Line Cards,” in IEEE INFOCOM, 2009.

[18] “Intel intrinsics guide,” https://software.intel.com/sites/landingpage/Intri
nsicsGuide/, 2017.

[19] C. Walsworth, E. Aben, kc claffy, and D. Andersen, “The caida
anonymized internet traces,” 2016, http://www.caida.org/data.

[20] A. Appleby, “Murmurhash3,” https://github.com/aappleby/smhasher/tre
e/master/src, 2017.

[21] B. Jenkins, “lookup3 hash function,” http://www.burtleburtle.net/bob/c/l
ookup3.c, 2017.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 25,2021 at 03:34:47 UTC from IEEE Xplore. Restrictions apply.

