Ultra-Fast Bloom Filters using SIMD
Techniques

Jianyuan Lu*, Ying Wan*, Yang L1*, Chuwen Zhang*,
Huichen Dai*, Yi Wang 7, Gong Zhang ', Bin Liu*

* Tsinghua University, China
"Huawei Future Network Theory Lab, Hong Kong

2017/6/14

Outline

1. Background and Motivation
Our Solutions

Simulation Results

> » b

Conclusions

What is Bloom Filter?

= A Bloom filter encodes a large set S = {x4,x,,...x,} tO a
small bit array.

= space-efficient randomized data structure

= A Bloom filteris used to check whether an element y
belongs to the set S or not.

y€ES? Yes/No

| > Dbitarray

encode

set §

Bloom Filter’s Applications

= Due to simplicity and efficiency, Bloom filters (and their

variants) have been applied in a wide range of network
applications.

= Routing table lookup

= Packet classification

= Per-flow measurement

= Deep packet inspection

= etc.

The Challenges

= Fast Network Link Speed

= The 40GE and 100GE ports for routers’ line-cards have already
been commercialized and deployed

= Cisco CRS-X and Huawei NE9OOO both support 400 Gbps
linecards

= Leaving a very limited processing delay
= 10GE port needs to achieve 15Mpps throughput

= Processing a packet within 300 clock cycles with the state-of-
the-art 4GHz CPU

= The Bloom filters need to keep pace

The Challenges

= Bloom filters become the performance bottleneck

= For example, one membership query needs at least
552 clock cycles using a common configurations below.
= k=10 hash functions
= Key length for hash function input is 8 bytes
= All hash functions employ CRC32

= Recall that every 300 clock cycles, a 10GE port has to
process a packet.

Idea

= Speedup the Bloom filter query using SIMD techniques

= SIMD instructions can operate multiple operands in parallel,
compared to traditional SISD instructions.

= SIMD instructions are widely supported by general CPUs and
embedded CPUs. Take Intel CPU as an example. It supports
MMX, SSE, AVX, FMA, KNC, SVML etc, SIMD instruction sets

SISD SIMD
a al | a2 [a3 | a4
AR <
b bl | b2 [b3 | b4
Il Ifl
C cl [c21c3|c4

Solutions

= We propose Ultra-Fast Bloom Filters (UFBF), a parallel
Bloom filter framework accelerated by SIMD.

= [he UFBF has three optimizations
= Parallel hash computation
= Parallel bit-test process
= Improving cache efficiency

Parallel Hash Computation

= Traditional hash computation

= linitial seed encounters a sequence of arithmetic and logic
operations, producing 1 hash value.

= Using SISD instructions

= Parallel hash computation

« Kk initial seed encounters a same sequence of arithmetic and logic
operations, producing k hash values.

= Using SIMD instructions

= 8 =

seedl

D E——

seed?

D E——

seed3

D ———

S

seed4

value

valuel

value2

value3

valued4

Parallel Hash Computation

Algorithm 1: The hash computation algorithm in UFBF

Initialization {1 seedslp| + [seeds, seeds, ..., seedy)
2 hashVals [p] — [0()]

Load k seeds to an SIMD register {3 vr_seeds + v_load(seeds)

/+ load the p seeds to an SIMD register «/

. . 4 vr_val + v_hashFunc(vr_seeds)
Implementing the rewrite parallel /+ implement the SIMD hash function which
hash algorithm

takes p seeds and compute in parallel «/
hashVals « v_store(vr_val)
Store the k hash values to memory

/* store the p hash values to memory x/

Algorithm 2: The main change from a traditional hash
function to its SIMD-version

—1 val + val OP a

/+* OP is a general arithmetic operation, wal
Rewrite rules: stores the intermediate hash value x/

1.broadcast the data, v_broadcast - |, , <_U v_broadcast(a)
2 Run the Corresponding SIMD /+ v_broadcast copy p copies of a to vr_a «/
i i 2 vr_val < v_OP(vr_val.vr_a)
Instruction, V_OP /+ v_OP 1s the SIMD-version of OP, wvr_val
stores the intermediate p hash values «/

S—

Parallel Bit-test Process

= [raditional Bloom filters employ sequential bit-test
= Blhy()], Blh(¥)], ..., Blhx(¥)]
T

= How to achieve parallel bit-test?

= |B[hy(¥)]
= |B[h(¥)]

= |B[hy (V)]
——

Parallel Bit-test Process

yA m=r*hb bits 4

bitarray | block[1] | block[2] | -=---- block[r-1]| block[r]

- S
- e

- FW bitS—/ -~ -
block word[1] | word[2] | -eeee- word[k]

£ b=k*w bits /

= Bit array is composed of r blocks

= The blocks have the same size, smaller than or equal to the
cache-line size.

= Each block is composed of k words

« word means the bit width of traditional register, e.g., 32-bit or
64-bit

= The k neighboring words bring in parallelism for membership

Parallel Bit-test Process

select

0|0'100 ------ 0|0|0}|:

/-word [1]1-~word[2] A~word[k]—
block[hylkey)] S

= How to insert an element e ?
= First, use one hash function selects a block from bit array
« Then, use k hash functions select one bit in each word and set

« Thatisto say, element e is encoded into k words in one
randomly selected block.

Parallel Bit-test Process

Use the parallel hash computation {1

algorithm to compute the hash values

Use SIMD instructions to parallel _|
shift bits

Use SIMD instructions to parallel _
test bits

Return positive or negative according —

Algorithm 3: The membership check algorithm in UFBF

1 Function membershipCheck(element e)

3

o I -l—‘

M

i
10
I

to the test result

12

13 end

loc + compute the block index of ¢

vr_val + compute £ hash values using Algorithm |

vr_a +— v_broadcast(])

vr_a +— v_shiftLeft(vr_a., vr_val)

/* v_shiftleft shifts k words in wvr_a
left in parallel by the amount
specified by wr_val %/

f‘:'_f; — \"_|0'¢l{l[&hf’ur'ﬁ'“ur'l]

vr_b + v_not(vr_b)

/+* v_not is bitwise NOT operation * /

v_test(vr_a, vr_b)

/* v_test is bitwise AND operation ¥ |

if zero-flag is set then

| return positive

end

return negarive

Improving Cache Efficiency

= [heorem 1

« Suppose the cache-line size is L. If the block size satisfies b|L
and the bit array is L-aligned, at most one cache miss would
occur in one membership check.

= Corollary 1.

= Suppose the cache-line size L is a power of 2. Then we can
conclude that if b|L , b is a power of 2, and the bit array is L-
aligned, at most one cache miss would occur in one
membership check.

= Corollary 2

=« Suppose w is a power of 2. Then we can conclude that if

k = % < % Is a power of 2, and the bit array is L-aligned, at

most one cache miss would occur in one membership check.

Simulation Results

= Experiment Setup

= Intel i7-4790 CPU, L1 cache (L1 D-Cache is 32 KBytes, L1 I-
Cache is 32 KBytes), L2 cache (256 KBytes), L3 Cache (8
MBytes)

= AVX, AVX2 SIMD instruction sets
= Real-world Internet traces, obtained from CAIDA

Simulation Results

clock cycles

clock cycles

200

150

100

30

0

200

150

100

30

murmur EEEET

murmur-SIMD

Saving more hash computation time
when hash function number increases

2.43 times

y

}}_ MurmurHash

23 clock cycles

Saving more hash computation time
when hash function number increases

1.78 times

1 2 3 4 5 6 7 8
of hash functions
1 1 1 1 1 | 1]
lookup3 C=Z=d '
lookup3-SIMD =0 | 00 |
..... . — g >§]
AlENNE : S

};I(, Lookup3

of hash functions

23 clock cycles

Simulation Results

= When the hash function number k varies, the membership
check speed comparison of four Bloom filter variants.

check speed (MSPS)

UFBF is fastest over other Bloom filter variants.

In negative check and positive check, the membership check
speed of UFBF is the same.

The small jitter of UFBF results from different cache efficiency
when k varies, better cache efficiency when k is a power of 2.

90 : . : 90 ; . .
UFBF —— | e 80k o o oo o JUPBE g
5 . FsoreE 52 |
FOHBF~+—— | s 70 — OHBF ¢ |
OMBF i S g% OMBF i
_ SBF i | B osof e]
\r________: % A0 U T M s P g e e -
-------- B % 30 [
--------------- - g 20 F B = o B
1 © 10 I]]]
7 8 3 4 5 6 7 8
K k
(a) negative check (b) positive check

Simulation Results

= When Bloom filter size m varies, the membership check
speed comparison of four Bloom filter variants.
« Three level CPU caches(L1, L2, L3) are marked out.

= We conclude that, whether the Bloom filter size m is larger than,
or smaller than, the CPU cache size, the membership check speed of
UFBF is the fastest.

?ﬂ T || "rrl'l || T T ||"'|| T T "l"rl'| T ?0 L) Il T llll'l 'I L L] llll'l L} T F'lllll Al
ol : UFBF —— || : : UFBF ——
g 0r | OHBF —3¢— s 0L | : OHBF —— []
g sof ’N-_'\F OMBF g & 50 N OMBF i
= : H — BF = ' '
3 OF g O = L s SBF
: : —3¢ : : : :
& 00 SV >4>.‘_ g 30— ! i
T o20F | ! &(\ =1 % 20} wLi-Cache | L3-Cache J 4
5 .9l A1-Cache L3-Cachelr— 3 2 ; ; .
: | : R ! A%
G pupal T | i i o9 swial 0) :. o : Ll ; . |-|i-|||

& T a3
%10 1%10 x10 1x108 1x107 1%108

m

(a) negative check (b) positive check

Conclusions

m We propose Ultra-Fast Bloom Filter(UFBF) which employs
SIMD parallel techniques to accelerate membership check

m The UFBF has three optimizations over standard Bloom filter
= Parallel hash computation
= Parallel bit-test process
= Improving cache efficiency

m Simulation studies show that, due to parallel computing and
higher cache efficiency, UFBF improves the membership
check speed 2~3 times over state-of-the-art Bloom filter
variants

Q&A

Thank You!

Backup problem 1

= What's the change of false positive rate of the UFBF

= Answer

= The UFBF has a little higher false positive probability than
standard Bloom filter, it has been formally analyzed in the
paper. Actually, the UFBF sacrifices the false positive rate a
little for vast lookup performance improvement.

Backup problem 2

= How do you realize the parallel algorithms using SIMD
instructions? Using compile languages or C
programming language?

= Answer

= The intel has a guide to call their SIMD instructions using
C/C++ programming language. In our algorithm, most of the
SIMD instructions are called by C programming language,
however, there are a few sentences are called by compile
language, because intel dose not provide the corresponding
interface for C programming language.

= We can share the code of our algorithm after the IWQo0S
conference if someone has interests.

