
2017/6/14

Ultra-Fast Bloom Filters using SIMD 
Techniques

Jianyuan Lu*, Ying Wan*, Yang Li*, Chuwen Zhang*, 
Huichen Dai*, Yi Wang †, Gong Zhang †, Bin Liu*

* Tsinghua University, China
†Huawei Future Network Theory Lab, Hong Kong



 

Outline

1. Background and Motivation

2. Our Solutions 

3. Simulation Results

4. Conclusions

2/21



 

What is Bloom Filter?

3/21

bit array
Yes/No

set S

encode



 

Bloom Filter’s Applications

 Due to simplicity and efficiency, Bloom filters (and their 
variants) have been applied in a wide range of network 
applications.
 Routing table lookup
 Packet classification
 Per-flow measurement
 Deep packet inspection
 etc.

4/21



 

The Challenges 

 Fast Network Link Speed
 The 40GE and 100GE ports for routers’ line-cards have already 

been commercialized and deployed
 Cisco CRS-X and Huawei NE9000 both support 400 Gbps 

linecards

 Leaving a very limited processing delay
 10GE port needs to achieve 15Mpps throughput
 Processing a packet within 300 clock cycles with the state-of-

the-art 4GHz CPU

 The Bloom filters need to keep pace

5/21



 

The Challenges

 Bloom filters become the performance bottleneck
 For example, one membership query needs at least 

552 clock cycles using a common configurations below.
 k=10 hash functions
 Key length for hash function input is 8 bytes
 All hash functions employ CRC32

 Recall that every 300 clock cycles, a 10GE port has to 
process a packet.

6/21



 

Idea

 Speedup the Bloom filter query using SIMD techniques
 SIMD instructions can operate multiple operands in parallel, 

compared to traditional SISD instructions. 
 SIMD instructions are widely supported by general CPUs and 

embedded CPUs. Take Intel CPU as an example. It supports 
MMX, SSE, AVX, FMA, KNC, SVML etc, SIMD instruction sets

7/21

a

b
vs

SISD SIMD

c

a1

b1

c1

a2

b2

c2

a3

b3

c3

a4

b4

c4



 

Solutions

 We propose Ultra-Fast Bloom Filters (UFBF), a parallel 
Bloom filter framework accelerated by SIMD.

 The UFBF has three optimizations
 Parallel hash computation
 Parallel bit-test process
 Improving cache efficiency

8/21



 

Parallel Hash Computation

9/21

seed value

seed1 value1

seed2

seed3

seed4

value2

value3

value4



 

Parallel Hash Computation

10/21

Initialization 

Implementing the rewrite parallel 
hash algorithm

Rewrite rules：
1.broadcast the data，v_broadcast

2. Run the corresponding SIMD 
instruction，v_OP



 

Parallel Bit-test Process

11/21



 

Parallel Bit-test Process

12/21



 

Parallel Bit-test Process

13/21



 

Parallel Bit-test Process

14/21

Use the parallel hash computation 
algorithm to compute the hash values

Use SIMD instructions to parallel 
shift bits

Use SIMD instructions to parallel 
test bits

Return positive or negative according 
to the test result



 

Improving Cache Efficiency

15/21



 

Simulation Results

 Experiment Setup
 Intel i7-4790 CPU, L1 cache (L1 D-Cache is 32 KBytes, L1 I-

Cache is 32 KBytes), L2 cache (256 KBytes), L3 Cache (8 
MBytes)

 AVX, AVX2 SIMD instruction sets
 Real-world Internet traces, obtained from CAIDA

16/21



 

Simulation Results

 xxx

17/21

MurmurHash
23 clock cycles

2.43 times

Lookup3
23 clock cycles

1.78 times

Saving more hash computation time 
when hash function number increases

Saving more hash computation time 
when hash function number increases



 

Simulation Results

18/21

(a) negative check (b) positive check



 

Simulation Results

19/21

(a) negative check (b) positive check



 

Conclusions

 We propose Ultra-Fast Bloom Filter(UFBF) which employs 
SIMD parallel techniques to accelerate membership check

 The UFBF has three optimizations over standard Bloom filter
 Parallel hash computation 
 Parallel bit-test process
 Improving cache efficiency

 Simulation studies show that, due to parallel computing and 
higher cache efficiency, UFBF improves the membership 
check speed 2~3 times over state-of-the-art Bloom filter 
variants

20/21



 21/21

Q&A

Thank You!



 

Backup problem 1

 What’s the change of false positive rate of the UFBF
 Answer

 The UFBF has a little higher false positive probability than 
standard Bloom filter, it has been formally analyzed in the 
paper. Actually, the UFBF sacrifices the false positive rate a 
little for vast lookup performance improvement.

22/21



 

Backup problem 2

 How do you realize the parallel algorithms using SIMD 
instructions? Using compile languages or C 
programming language?

 Answer
 The intel has a guide to call their SIMD instructions using 

C/C++ programming language. In our algorithm, most of the 
SIMD instructions are called by C programming language, 
however, there are a few sentences are called by compile 
language, because intel dose not provide the corresponding 
interface for C programming language.

 We can share the code of our algorithm after the IWQoS 
conference if someone has interests.

23/21


