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Abstract—The network link speed is growing at an ever-increasing rate, which requires all network functions on routers/switches to
keep pace. Bloom filter is a widely-used membership check data structure in networking applications. Correspondingly, it also faces the
urgent demand of improving the performance in membership check speed. To this end, this paper proposes a new Bloom filter variant
called Ultra-Fast Bloom Filters (UFBF), by leveraging the Single Instruction Multiple Data (SIMD) techniques. We make three
improvements for UFBF to accelerate the membership check speed. First, we develop a novel hash computation algorithm which can
compute multiple hash functions in parallel with the use of SIMD instructions. Second, we elaborate a Bloom filter’s bit-test process
from sequential to parallel, enabling more bit-tests per unit time. Third, we improve the cache efficiency of membership check by
encoding an element’s information to a small block so that it can fit into a cache-line. We further generalize UFBF, called c-UFBF,

to make UFBF supporting large number of hash functions. Both theoretical analysis and extensive evaluations show that the UFBF
greatly outperforms the state-of-the-art Bloom filter variants on membership check speed.

Index Terms—Bloom filter, SIMD, parallel techniques

1 INTRODUCTION

BLOOM filters are kinds of space-efficient random-
ized data structures for membership check [1],
[2]. Due to their simplicity and efficiency, Bloom filters
(and their variants) have been applied in a wide range of
network applications. For example, they have been used
in routing table lookup [3], [4], [5], packet classifica-
tion [6], network measurement [7], [8], [9], web cach-
ing [10], [11], and fast hash table lookup [12] etc. The
trend of these applications is that they need to run in a
higher and higher speed network environment. Cur-
rently, the 40GE and 100GE ports for routers’ line-cards
have already been commercialized and deployed [13].
High-end core routers such as Cisco CRS-X [14] and Hua-
wei NE9000 [15] both support 400 Gbps line-card (a line-
card can accommodate several high-speed ports). The
development of high-speed network requires all network
functions to run at line rate, leaving a very limited time
budget for network devices to process every packet. For
example, a 40GE port needs to achieve 60 Mpps through-
put, i.e., processing a packet within 75 clock cycles when
using a state-of-the-art 4 GHz CPU. Therefore, Bloom
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filters need to run extremely fast to avoid becoming the
network applications” performance bottleneck.

Most of the researches on network applications assume
the Bloom filters have no (or, tiny) cost for membership
check. However, in fact, it is not. A Bloom filter needs to com-
pute k£ independent hash functions and conduct the same
number of memory accesses for an element’s membership
check. On the one hand, the hash functions in Bloom filters
have computational cost. We know that strong hash func-
tions (e.g.,, MD5 and SHA-1) are computation-intensive [16].
Though simple hash functions can be the alternatives for
Bloom filters [17], their performance would be lower and
the computational cost shall not be neglected. A test on our
actual machine shows that MurmurHash (a simple non-
cryptographic hash function) consumes 23 clock cycles on
average for one hash computation. On the other hand, the
memory accesses in Bloom filters have time cost and in some
cases may cause several cache misses. Due to the limited on-
chip cache size, most of the system data is stored on off-chip
storage (e.g., DRAM). In the worst case, k cache misses will
occur in one element’s membership check. A large amount
of cache misses will deteriorate the system performance to a
large extent. Systems which employ a large number of Bloom
filters(e.g., 24 in [3]) or use a large number of hash functions
in one Bloom filter(e.g., over 10 in [18]), will experience more
obvious computational cost and memory access delay.

In this paper, we propose a new Bloom filter variant
named Ultra-Fast Bloom Filter (UFBF), aiming to improve a
Bloom filter’'s membership check speed. The UFBF consists
of a sequence of blocks. An element’s information is
encoded in a randomly selected block. In practice, if the
blocks are cache-line size aligned and the block size divides
the cache-line size, only (at most) one cache miss would
occur during an element’s membership check. To speedup
the hash computation in UFBF, we develop a novel algo-
rithm which can compute the k hash functions in parallel.
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TABLE 1
Notations
n number of elements in a set
m number of bits in the bit array
k number of membership bits for each element
w number of bits in a word
r number of blocks in a Bloom filter, m = r x w x k
b number of bits in a block, b = w x k
¢ number of selected blocks to encode an element in c-UFBF
fs the false positive probability of SBF
fu the false positive probability of UFBF
fe the false positive probability of c-UFBF

The algorithm uses CPU’s multimedia instructions, also
known as Single Instruction Multiple Data (SIMD) instruc-
tions' to improve the parallelism in membership check pro-
cess. By setting different initial seeds in SIMD registers and
implementing hash function code with SIMD instructions,
we can achieve to complete computing the k hash functions
in parallel. To further speedup the sequential bit-test pro-
cess, we use the SIMD instructions to test & bits in parallel.
To facilitate the use of SIMD instructions in bit-test process,
a block in UFBF is divided into £ consecutive words, and
we associate each word with one hash function. That is to
say, a hash function can only address its associate word.

Essentially, we make three optimizations for the UFBF to
enable it runing fast. First, the UFBF reduces hash computa-
tion time to (approximate) 1/ of a standard Bloom filter, by
developing a novel hash computation algorithm which com-
putes k hash values in parallel. Second, the UFBF changes
the sequential bit-test process to parallel bit-test process. The
UFBF changes the data structure to a block-word style, which
brings in parallelism in membership check. Third, the UFBF
improves the cache efficiency by encoding an element’s
information to a block. In this way, at most one cache miss
would happen in an element’s membership check.

The remaining of the paper is organized as follows.
Section 2 surveys the related work. Section 3 details the UFBF
scheme and theoretical analysis. Section 4 introduces an
extension of UFBF. Section 5 presents the experimental results
for performance evaluation. Section 6 concludes the paper.

2 RELATED WORK

2.1 Standard Bloom Filter

Bloom filter was introduced by Burton H. Bloom in
1970 [20], which is called Standard Bloom Filter (SBF) in this
paper. An SBF is a space-efficient randomized data structure
which encodes a large data set to a small memory space. A
lookup in SBF can only answer one question: whether an ele-
ment belongs to a set or not. However, the lookup answers
have false positives. A false positive happens when an SBF
answers that an element belongs to a set, but actually it is
not. In practical applications, the false positive probability is
usually set to be very small, e.g., less than 1079, to avoid a sig-
nificant impact on performance. For better elaboration of SBF
and our following ideas, we use a number of notations in this
paper, which are shown in Table 1.

1. The SIMD instructions are widely supported by general CPUs
and embedded CPUs. Take Intel CPU as an example. It supports SIMD
instruction sets, such as MMX, SSE, AVX, FMA, KNC, SVML [19].

An SBF for representing a set .S is encoded in an array of
m bits. All bits are initially set to 0. Assume S = {z,
Zg, ..., T, } of n elements is going to be encoded in SBF. An
element uses %k independent hash functions hi,ho, ...,k
with range [0, m — 1] to select bits to set. For each element
x € S, the bits with location h;(x) are set to 1 for 1 <i < k.
All the bits in SBF are shared by all hash functions and all
elements. So a bit in SBF may be set to 1 multiple times, but
only the first set affects.

After the encoding, the main function of SBF is to imple-
ment membership queries. Given an element e, the SBF has
to check whether e € S or not. If all bits with location h;(e)
are set to 1, we say e € S. If at least one bit with location
hi(e) is 0, we say e ¢ S. A false positive may happen in the
situation that if e ¢ S, but all bits with location h;(e) are set
to 1 by elements in S.

The false positive probability can be calculated by the fol-
lowing formula:

nk

fo = (1 (- 1/m)”‘k’)kz (1 - e*m)k. o)

The false positive probability can be affected by three param-
eters m, n, k. In practical applications, n is determined by the
set size. f, decreases as m increases, so we can lower false
positive probability by increasing memory space if allowed.
The most flexible parameter is k&, which means how many
hash functions we use in the system. We can minimize the
false positive probability for fixed m and n to get an optimal
hash function number k. By taking the derivative of f;
with respect to k and equalizing it to 0, we can get:

kopr = (m/n)in2 =~ 9m/13n, (2)

with optimal %, the false positive probability is:

Kopt
f— @) . ®)

It means each bit in the bit array is set to 1 with probability
when k equals to the optimal value.

2.2 Towards Fast Bloom Filters

Our work in this paper aims to build fast Bloom filters by
using SIMD techniques. A previous work builds a vector-
ized implementation for probing Bloom filters using SIMD
techniques [21]. However, this work is only an engineering
implementation, lacking of theoretical improvements. Sev-
eral previous studies attempt to build fast Bloom filters,
which can be grouped into two categories:

1) Improving cache efficiency. In order to check a mem-
bership, a Bloom filter needs to perform k£ memory
accesses. In the worst case, each memory access
results in one cache miss in each element member-
ship query. We know that high cache miss rate will
deteriorate the program performance. Therefore, a
few researches try to reduce cache misses in mem-
bership check to improve the Bloom filter’s lookup
performance. One-Memory Bloom Filter (OMBF)
[22] improves the cache efficiency by restricting one
element’s hashing space to a word. A word is
defined as the communication bandwidth between
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Fig. 1. The basic structure of UFBF.

the off-chip memory and the processor in one mem-
ory access, e.g., 32 bits or 64 bits. To encode an ele-
ment, an OMBEF first selects a word from the bit
array using an additional hash function, and then
maps k bits in the word using k hash functions.
OMBEF effectively reduces (at most) k& cache misses to
(at most) one cache miss in an element’s membership
check. However, this method increases the false pos-
itive probability compared to SBF. Blocked Bloom
Filter (BBF) [23] has a similar framework with
OMBF. The difference is that BBF consists of a
sequence of blocks (instead of words in OMBEF). BBF
restricts one element’s hashing space to a block, and
a block has a cache-line size. A common cache-line
size is 512 bits in modern CPUs. If blocks are cache-
line aligned, only (at most) one cache miss could
happen in one element’s membership check.

2)  Reducing hash computation cost. A Bloom filter needs to
compute k independent hash functions to implement
membership check. We know that hash computation
is time-consuming. If % is large, the excessive latency
introduced by hash computation will become the sys-
tem performance bottleneck. Lu et al. [24] propose a
Bloom filter variant, called One-Hashing Bloom Filter
(OHBE), to lower the hash computation overhead in
Bloom filters. An OHBF uses only one base hash func-
tion plus £ modulo operations to implement a Bloom
filter. The bit array in OHBF is divided into & partitions.
To encode an element, OHBF selects a bit and sets it to 1
in each partition. The locations of selected bits are
determined by using the base hash value to modulo
each partition’s size. Though only one base hash func-
tion is used, OHBF cannot reduce the hash computa-
tion overhead to 1/k as the additional modulo
operations bring in excessive computation overhead.
Kirsh and Mitzenmacher [25] propose Less Hashing
Bloom Filter (LHBF) which uses two base hash func-
tions hy(x), he(z) to implement a Bloom filter. If more
than two hash functions are needed, LHBF mainly
employs a form g;(x) = hi(x)+ i * he(z) to construct
additional hash functions. The authors have proved
that LHBF has the same asymptotic false positive prob-
ability as SBF. Song et al. introduce a simple method to
produce k hash values using O(log k) seed hash func-
tions [4]. However, the paper lacks theoretical analysis
on the randomness of the additional synthetic hash
functions.

3 ULTRA-FAST BLOOM FILTERS

In this section, we introduce a new Bloom filter variant,
called Ultra-Fast Bloom Filter (UFBF), which aims to
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Fig. 2. An example of the insertion process in UFBF.
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improve the Bloom filter's membership check speed in
practice. The UFBF improves the parallelism for hash com-
putation and membership bit-tests by using SIMD (Single
Instruction Multiple Data) instructions. Since UFBF encodes
an element’s information to a small block, which can be fit-
ted into the CPU’s cache-line, thus it effectively improves
the cache efficiency when implementing membership check.

3.1 Basic Data Structure

The UFBF is composed of a sequence of r blocks, and each
block has b bits. A block contains & consecutive words, and
each word has w bits. Apparently, b = k x w. The basic struc-
ture of UFBF is shown in Fig. 1. A word means a group of
bits whose length equals to general registers’ bit-length. For
example, the length of general registers of modern CPUs is
32-bit or 64-bit, which means a word has w = 32 (or 64) bits
in practice. Note that a Bloom filter has m bits in total.
Therefore, we have m = rx b = r* k* w.

In the insertion process, an element’s information is
encoded in a randomly selected block. The insertion process
is as follows. UFBF first selects a block from the bit array
using a hash function hy. Then it selects k bits in the selected
block using k hash functions Ay, hs,...,h;, and sets these
bits to ones. In fact, the hash function h;,1 < i < k is associ-
ated with word[:], and it can only address the bits in its
associate word.

We use an example to illustrate the insertion process of
UFBF. Assume an element e is going to be encoded and the
word size is w = 4. First, we select a block in the bit array,
i.e., block[hg(e)]. Second, we select k bits from k words (in
block[hy(e)]) using hi(e) =1,ho(e) =2,...,ht(3) =4, ie,
word[1].bit[h; (e)], word[2].bit[ha(e)], ..., word[Kk].bit[ A (e)].
Then we set the & bits to ones. The example is shown in Fig. 2.

The check process, checking if a given element belongs to
the encoded set, is similar to the insertion process. UFBF first
selects a block from the bit array using hy. Then it selects &
bits as the insertion process. If all the k bits are ones, then
UFBF returns a positive result (element in the set). Other-
wise, it returns a negative result (element not in the set).

3.2 The Hash Computation Algorithm in UFBF

We develop a novel algorithm for UFBF to calculate the k
hash functions in parallel with the use of SIMD instructions.
The SIMD instructions are originally designed to accelerate
multimedia encoding/decoding. Unless explicitly called, the
common programs (by default) do not use these instructions
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for the consideration of backward-compatibility and cross-
platform use. Even with optimization option for some com-
pliers (e.g., the —O2 option for gcc), only a few sentences of
the common programs would be complied to SIMD instruc-
tions. It is a manner of implicit calls of SIMD instructions.

The hash computation algorithm in UFBF is designed to
facilitate the use of SIMD instructions. And we will explic-
itly call the SIMD instructions to accelerate the hash compu-
tation for Bloom filters. Although the SIMD instruction
sets are platform-dependent, we use a high-level abstract
description of these instructions to introduce our algorithm.

For better understanding, we define two naming rules in
our algorithms:

e ur_{} means an SIMD register/variable.

e v_{} means an SIMD operation/command.

Suppose the SIMD instructions can implement p pairs
arithmetic operations (i.e., add, sub, mul, etc) at the same
time, e.g., (z1,22,...,2y) = (z1,22,...,2p) + (Y1, Y2, - - -, Yp)-
The parameter p is determined by a specific SIMD instruc-
tion set. For example, the Intel SSE instruction set can
implement p = 4 pairs of 32-bit arithmetic operations, while
the AVX instruction sets can implement p = 8 pairs of 32-bit
arithmetic operations.

The hash computation algorithm in UFBF is shown in
Algorithm 1. This algorithm produces p hash values, by
using the same hash function with different initial seeds. It
first loads p seeds® to an SIMD register vr_seeds. Then it
uses an SIMD-version hash function v_hashFunc to compute
the hash values. After it completes the computation, it stores
the result from an SIMD register vr_val to memory. The
SIMD-version hash function is rewritten with the SIMD
instructions according to a traditional hash function. While
the SIMD-version hash function is related to a specific tradi-
tional hash function, we do not show the algorithm for the
v_hashFunc. To guide the rewrite rules, we show the main
change from a traditional hash function to its SIMD-version
in Algorithm 2. For better understanding, we show an
example of Algorithm 2 in Algorithm 3, which shows how
to translate a traditional addition to SIMD additions in C
code. The code follows the Intel provided APIs and could
run in CPUs which support AVX/AVX2 instructions.
The computation process of a traditional hash function can
be summarized as follows: an initial seed encounters a
sequence of arithmetic operations, storing each step’s result
to an intermediate variable. While the SIMD-version can be
summarized as that p initial seeds encounter the same
sequence of arithmetic operations, storing each step’s
results to an intermediate SIMD variable. Therefore, the
main change of an SIMD-version hash computation is that
it has to prepare the SIMD operation data wvrval —
v_broadcast(a) and implement the corresponding SIMD
operation v_op.

3.3 Parallel Bit-Test in Membership Check

In the membership check process, standard Bloom filters
(and their variants) must test k bits sequentially, i.e., test k
bits one by one and return negative once encountered a zero-

2. Many hash functions(e.g., lookup3 and murmur used in this paper)
do not have special requirements on the seeds. Therefore we randomly
select p seeds, pre-store the seeds in a table and use them when needed.

bit. If zero-bit is not encountered at the end of this bit-test
process, return positive. In our UFBF, we change the
sequential bit-test process to parallel bit-test process, reduc-
ing the complexity from O(k) to O(1). In order to achieve
parallel bit-test, we make two improvements for the mem-
bership check.

Algorithm 1. The Hash Computation Algorithm in UFBF

1 seeds[p] < [seedy, seedy, ...
2 hashVals[p] < [0,0,...,0];
3 vr_seeds +— v_load(seeds)
/* load the p seeds to an SIMD register */
4 vr_val < v_hashFunc(vr_seeds)
/* implement the SIMD hash function which takes p

,seed,] ;

seeds and compute inparallel */
5 hashVals <+ v_store(vr_val)
/* store the phash values to msemory */

Algorithm 2. The Main Change from a Traditional Hash
Function to its SIMD-Version

1 val < val OP «a
/*0OP is ageneral arithmetic operation, val stores

the intermediate hash value */
3
1 vr_a < v_broadcast(a)
/*v_broadcast copy p copies of atovr.a */

2 vr_val < v_OP(vr_val, vr_a)
/*v_OP is the SIMD-version of OP, vr_val stores the
intermediate phashvalues */

Algorithm 3. An Example of Algorithm 2 which Shows
how to Translate a Traditional Addition to SIMD Addi-
tions in C Code

1 val = val + a;

/*val and a are 32-bit (int) integers */
03
1 _-m256i vr.a = -mm256_setl_epi32(a);

2 __m256i vr_val = _mm256_add_epi32(vr_val, vr_a);
/* _mm256_setl_epi32, _mm256_add_epi32 are the Intel
provided API functions for AVX/AVX2 instruc-
tions */

First, we change the bloom filter data structure to a block-
word style (shown in Fig. 1), which brings in parallelism for
membership check. The parallelism is reflected in that the
UFBF encodes an element to k consecutive words (in a
block), and these words can be fetched and tested at the
same time. As the standard Bloom filter encodes an element
to k arbitrary locations of the bit array, it does not have this
kind of parallelism, for the reason that it has to fetch a bit
(from memory to register) and test it for every membership
bit in the bit array. Second, we develop a new membership
check algorithm, which implements a parallel bit-test pro-
cess with the aid of SIMD instructions. This algorithm com-
putes the k hash functions in parallel, effectively reducing
hash computation time.

The membership check algorithm for UFBF is shown in
Algorithm 4. In this algorithm, the £ membership bits are
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tested in parallel. The k£ hash functions for membership
check in this algorithm are calculated in parallel using Algo-
rithm 1. Actually, we make an assumption here that k£ < p,
which means the p hash values produced by Algorithm 1
can satisfy the Bloom filter’s hash function need. Since p is a
fixed parameter for a specific SIMD instruction set, we can
not set k an arbitrary value in practice. This problem can be
solved by an extension of UFBF, introduced in Section 4.

Algorithm 4. The Membership Check Algorithm in
UFBF

1 Function membershipCheck(element e)

2 loc < compute the block index of e;
3 wroval < compute k hash values using Algorithm 1;
4 wr_a < v_broadcast(1) ;
5  wr_a « v_shiftLeft(vr_a, vr_val)
/* v_shiftLeft shifts k words in vr.a left in
parallel by the amount specified by vrval */
6  wvr.b « v_load(&block|loc]);
7 wr_b < v_not(vr_b)
/* v_not is bitwise NOT operation */
8 v_test(vr_a,vr_b)
/* v_test is bitwise AND operation */
9  if zero-flag is set then
10 return positive;
11  end
12 return negative;
13 end

3.4 Cache Efficiency for Membership Check

The cache efficiency for membership check of UFBF is
expected to be far better than SBF. In UFBF, an element’s
information is encoded in a small block of the bit array , and
a block can easily fit into one cache-line of CPU’s cache. In
SBF, an element’s information is encoded in k arbitrary loca-
tions of the bit array, and at most k cache misses could occur
during one membership check process.

Formally, we analyze the worst case cache misses in one
membership check of UFBF. In fact, we make an assumption
in the following proofs: once a cache miss occurs, the CPU
would load the corresponding cache-line immediately,
from off-chip memory (or, low-level cache) into on-chip
cache (or, high-level cache). This assumption is true in prac-
tice for most of the CPUs.

In Theorem 1, we prove that two cache misses would
occur in the worst case in one membership check process, if
the block size is no more than the cache-line size. While this
constraint can be easily satisfied in practice, we want to
reduce (at most) two cache misses to (at most) one cache
miss in one membership check.

In Theorem 2, we prove that only one cache miss would
occur in the worst case in one membership check process, if a
more stringent condition is satisfied, i.e., the block size
divides the cache-line size and the bit array is cache-line size
aligned. In practice, the cache-line usually has size a power
of 2, which means the block size should also be a power of 2
(Corollary 1). By Corollary 2, the hash function number &
should be a power of 2, which suggests that k = 2,4, 8,16 etc.
That is to say, UFBF experiences better cache efficiency when
kis a power of 2 than when £ is other values.

957

Theorem 1. Suppose the cache-line size is L. If the block size sat-
isfies b < L, at most two cache misses would occur in one mem-
bership check.

Proof by Contradiction. Suppose that more than two
cache misses occur during one membership check.
Because an element’s information is encoded in just one
block in UFBF, only one block memory would be missed
in cache during one membership check. Denote the
starting and end address of the missed block as addr_s,
addr_e, respectively. The supposition, more than two
cache misses, means 3¢ € N such that addr_.s < tL <
(t+1)L < addre. Then we can get b= addre—
addr_s > [(t + 1)L —tL] = L, which contradicts b < L in
the statement. 0

Theorem 2. Suppose the cache-line size is L. If the block size sat-
isfies b|L and the bit array is L-aligned, at most one cache miss
would occur in one membership check.

Proof by Contradiction. Suppose that more than one
cache miss occurs during one membership check. Denote
the starting and end address of the missed block as
addr_s, addr_e, respectively. Because b|L and the bit array
is L-aligned, then 3 s,4,j € N such that L = sb, addr_s =
iL + jb, addre = iL + (j+ 1)b. The supposition, more
than one cache miss, means 3 ¢t € N such that addr_s <
tL < addr_e. Substitute addr_s, addr_e, we get iL + jb <
tL < iL+ (j+1)b. Further, we get isb+ jb < tsb <
isb+ (j+1)b. Simplify this formula, we can get 0 <
(t—1i)s+j < 1. Apparently, (t —i)s + j is an integer and
we get a contradiction. 0

Corollary 1. Suppose the cache-line size L is a power of 2. Then
we can conclude that if b < L, b is a power of 2, and the bit
array is L-aligned, at most one cache miss would occur in one
membership check.

Corollary 2. Suppose w is a power of 2. Then we can conclude
that if k=2<L kis a power of 2, and the bit array is

L-aligned, at most one cache miss would occur in one member-
ship check.

3.5 False Positive Probability Analysis

The false positive probability of our proposed UFBF, f,, is
analyzed as follows. Assume we use fully random hash
functions. Let F be the false positive event that an element
¢/, which is not in the set, is mistakenly regarded as in the
set. To check the membership of ¢/, it is hashed to k words,
each word is set one bit, in a membership block. Suppose
elements have been inserted to this membership block,
where x € [0,7n]. Then a bit is set in a word with probability
1—(1—2)". Let X be the random variable that represents
how many elements have been inserted to a block. Then the
conditional probability for F to occur when X' = z is:

PHFIX = ) = (1 - (1 - D)k @

Obviously, X follows the binomial distribution, Bino
(n,1), then we can get

prix=a)=(") (1) (1 - 1)77”7\1 0<z<n ()

r r
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TABLE 2
Comparison of the Theoretical False Positive Probability
between SBF and UFBF, n = 10000, k = 4

load factor fs w =32 w =64 -
(n/m) fu bk fu bk
0.02 3.49 e-5 1.39e4 2.98 7.98 e-5 1.28
0.04 4.78 e-4 1.02 e-3 1.14 7.35 e-4 0.54
0.06 2.07 e-3 3.44 e-3 0.66 2.73 e-3 0.32
0.08 5.62 e-3 8.11 e-3 0.44 6.85 e-3 0.22
0.10 1.18 e-2 1.56 e-2 0.32 1.37 e-2 0.16
0.12 2.11e-2 2.62 e-2 0.24 2.37 e-2 0.12
0.14 338e2 4.01e-2 0.19 3.70 e-2 0.09
0.16 4,99 e-2 5.75e-2 0.15 5.37 e-2 0.08
0.18 6.94 e-2 7.78 -2 0.12 7.36 e-2 0.06
0.20 9.20 e-2 1.01 e-1 0.10 9.69 e-2 0.05

Then, we can get the false positive probability of UFBF

as:
n

= Pr{F} = Y (P{X =} Pr{FlX = 2})

=0

2O ()00

In the previous analysis, we do not show the effect of
hash function hy that is used to select the block. Usually the
hash values produced by Algorithm 1 would have unused
hash bits which can be utilized by h,. However, if the
unused hash bits can not satisfy the requirement of kg, then
the hash computation cost of , should be considered.

It is difficult to compare the false positive probability of
UFBF and SBF directly using equations, therefore we make
some numerical calculations to find the trend. Table 2
presents the comparison of theoretical false positive proba-
bility between SBF (f,) and UFBF (f,). It can be concluded
from this table that UFBF has higher false positive probabil-
ity than SBF. In other words, UFBF needs to use more mem-
ory to achieve the same false positive probability as SBF.
We find that the false positive probability changes intensely
for small load factors () both for UFBF and SBF. When the
load factor of Bloom filters increases, the difference of
false positive probability between UFBF and SBF (f-f T -
decreases. We also find that £2-/s nearly halves if the word
size (w) of UFBF changes from '32 to 64. From the perspec-
tive of false positive probability, we prefer larger word size
for UFBF. However, the word size usually is restricted by
the SIMD instructions CPU supported.

(6)

3.6 Discussion

In general, the UFBF attempts to improve membership
check performance by introducing parallel operations in
membership check process and using SIMD instructions to
accelerate these parallel operations. The SIMD instructions
are well supported by general and embedded CPUs. How-
ever, the dedicated hardware like core router which uses
hardware forwarding engines or network processors which
do not supply the SIMD instructions, this advanced feature
cannot be utilized. Another issue of the UFBF is the
poor scalability of hash function number for indexing
membership bits. Due to restriction of underlying SIMD
instructions, the UFBF can only support no more than p

hash functions, where p is determined by a specific SIMD
instruction set. Although this issue can be relieved by using
more powerful instruction sets with larger parallelism, in
next section, we introduce a generalization of UFBF, which
addresses this issue completely.

4 A GENERALIZATION OF UFBF

The UFBF does not support large hash function number £,
since k is restricted by the underlying SIMD instructions. In
this section, we introduce a generalization of UFBF, called c-
UFBF, which has scalability for the number of hash functions.
The c-UFBF has the same basic data structure with UFBF, as is
shown in Fig. 1. The difference is that, when inserting an ele-
ment, c-UFBF randomly selects ¢ blocks to encode an element.
The operation for each selected block is the same as UFBF.

4.1 False Positive Probability of c-UFBF

Let k£ be the total bits used for membership check. Let
ki, ko, ..., k. be the bits used for each block’s membership
check. We have k= >"; | k;. To simplify the false positive
analysis of c-UFBF, we assume each block has equal number
of membership bits k; = %,i € [1,c].

Let f. be the false posmve probability of c-UFBF. Assume
an element ¢’ is not in the set. To check the membership of
€/, ¢ blocks are selected. Let us first analyze the event F that
% bits in one of the ¢ blocks are all ones. Let X be the random
variable that represents how many times a block has been
selected to encode an element. Suppose x is a specific value
of X, where z € [0, nc]. Then the conditional probability for
F to occur when X = z is:

PHFIX =2} = (1 - <1 - %))k/ @

As each element selects ¢ blocks to encode its member-
ship, a total of nc selections are made in the insertion pro-
cess. Assume we use fully random hash functions. Hence, a
specific block will be selected with probability 1 in each
selection. Therefore, X follows the binomial distribution,
Bino(nc,1), then we can get:

Pr{X =2z} = (T) G)I <1 - %) o ®)

The probability for F to happen is:

Pr{F) = i(Pr{x — 2} PHFIX = 1))

k
Cn 1 cn—=r 1 N\ ¢
=20 (=) (-0-9)
T w
The element ¢’ selects ¢ blocks for membership check. If
the event F happens in all these blocks, a false positive hap-

pens in c-UFBF. Therefore, the false positive probability of
c-UFBF is:

= (PriF)Y

Je
B D76 -]
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TABLE 3

Comparison of the Theoretical False Positive Probability
for c-UFBF When ¢ Changes, n = 10000, w = 32,k = 4

load factor c=1 c=2 c=4

(n/m) fi fo &-h fi Lh
0.02 1.39e4 647e5 —053 349e5 —-0.75
0.04 1.02e-3 650e-4 —0.36 4.78e-4 —0.53
0.06 344e3 252e3 027 207e3 —040
0.08 811e-3 6.45e3 020 5.62e-3 —-0.31
0.10 1.56e2 131e2 —-016 1.18e2 024
0.12 262e2 228e2 013 21le-2 —-0.19
0.14 401e2 360e2 —0.10 3.38e-2 -0.16
0.16 575e2 526e2 008 499e2 -0.13
0.18 7.78e2 723e2 —-0.07 694e2 —0.11
0.20 1.01 e-1 952e2 —0.06 9.20e-2 —0.09

In this table, fi = fye—1, fo = feje=2, f1 = feje—1-

Obviously, the f..—; = f,. When c = k, we can get:
f cle=k

S 09002
S
-1 (“f—u)ﬂ_%)k"]’“
(-2 -

The numerical result of false positive probability of c-
UFBF is shown in Table 3. When the parameter ¢ increases
from 1 to 2 and 4, the false positive probability of c-UFBF
presents a decreasing trend (fyjc—1 > feje—2 > feje—4). Due to
feje=1 = fu; feje=a = fs, we can conclude from this table that
fu> fe > fs. According to our calculations, this decreasing
trend is held for all common parameter settings of c-UFBF.
That is to say, the false positive probability of c-UFBF is
between UFBF and SBF (f, > f. > fs). When the load factor
(1) increases, the false positive probability of c-UFBF
presents a decreasing trend, which is similar to UFBF.

=~

I
5

1n

i
=

S =

4.2 Membership Check Overhead of c-UFBF

It is easy to prove that c-UFBF has c times the membership
check overhead of UFBF. The increased overhead is three-
fold. First, it will cause 2¢ cache misses in the worst case for
one element membership check. If alignment is satisfied as
UFBF, it will cause ¢ cache misses in the worst case for one
element membership check. Second, it will take ¢ times of
the hash computation time used by UFBF. Third, it will take
¢ times of the bit-test time used by UFBF. Therefore, we
should minimize c if we aim to build fast Bloom filters. Due
to 1 < ¢ <k, the membership check overhead of c-UFBF is
between UFBF and SBF (assuming the membership check
overhead of UFBF is just ; of SBF).

4.3 Discussion

The c-UFBF extends the UFBF to support a larger number of
hash functions. Instead of selecting one block to encode an

959
TABLE 4
Datasets Used in the Following Experiments
name data ID length # of items
datasetl dst IPs 4 bytes 5M
dataset2 flows 13 bytes 50 M

element as UFBF, c-UFBF selects ¢ blocks to encode an ele-
ment. Though c-UFBF has better scalability of hash function
number, it has ¢ times the membership check overhead of
UFBF. For not sacrificing the membership check perfor-
mance a lot, a small ¢ should be employed in c-UFBF. Actu-
ally, the c-UFBF is a tradeoff between UFBF and SBF. With
the same memory requirement, UFBF has higher false posi-
tive probability and lower membership check overhead than
SBF. While c-UFBF’s false positive probability and member-
ship check overhead are both between UFBF and SBF.

5 EVALUATION

We make experiments to evaluate our proposed UFBF and
its generalization c-UFBF.

5.1 Experiment Setup

Platform. We implement the experiments on a commodity
server with Intel CPU Core i7-4790 (4 cores x 2 threads,
3.6 GHz). Each core of this CPU has independent L1 cache
(L1 D-Cache is 32 KBytes, L1 I-Cache is 32 KBytes) and L2
cache (256 KBytes). The 4 cores share L3 Cache (8 MBytes).
The cache-line size is 64-byte (512 bits). This server has
16 GB DDR3 (1600 MHz) memory. This server runs Micro-
soft Windows 7, 64-bit operating system.

SIMD instructions. The Intel i7-4790 CPU supports sev-
eral SIMD instruction sets. We use the AVX, AVX2 instruc-
tion sets in our experiments. Because AVX2 is a simple
extension of AVX, we use the term AVX to represent AVX,
AVX2 in the following description if there is no confusion.
These two instruction sets can operate 16 256-bit regis-
ters [19]. AVX can implement eight 32-bit signed /unsigned
integer arithmetic operations in parallel. Most of the AVX
SIMD instructions could be called using C/C++ style func-
tions provided by Intel Intrinsics Guide [26]. We use C/C++
programming language to code our evaluation programs.
The complier we use is gcc. To use the AVX, AVX2 instruc-
tion sets, the special options -mavx, -mavx2 are needed for gcc.

Datasets. We use the real-world Internet traces, obtained
from CAIDA [27], to evaluate the performance of UFBF.
The trace is extracted from a backbone 10 Gbps link and
lasts 60 minutes. It contains 2G IPv4 packets, 5 M different
destination IP addresses, and 50 M flows (flow identifier is
< srclP, dstIP, srcPort, dstPort, protocol >). We use two data-
sets extracted from the traces for our evaluation, as shown
in Table 4.

5.2 The Hash Computation Evaluation

To test the performance of the hash computation algorithm
in UFBF (Algorithm 1), we make two comparative experi-
ments. We use the traditional hash functions murmur [28]
and lookup3 [29] as the compared hash functions. We set the
hash value’s bit-width as 32-bit. Since the AVX instruction
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Fig. 3. The run time comparison between lookup3 hash function and its
SIMD-version.
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Fig. 4. The run time comparison between murmur hash function and its
SIMD-version.

set uses 256-bit registers, the hash computation algorithm in
UFBF can compute (at most) 8 hash functions in parallel.

Figs. 3 and 4 show the evaluation results. We can find
that the lookup3 hash function consumes 23 clock cycles on
average for one hash computation. As the computation time
is proportional to the hash function number, a linear
increasing trend occurs for computing more hash functions.
However, the SIMD-version (using Algorithm 1) implemen-
tation of lookup3 has a constant computation time when
hash function number ranges from 1 to 8. We find that
lookup3-SIMD consumes 1.78 times the time of lookup3 for
computing one hash function. This difference comes from
two aspects. First, the SIMD-version hash function has to
use additional instructions to prepare the data for SIMD
registers. Second, an SIMD instruction usually takes slightly
more time compared to a corresponding common instruc-
tion. The slightly increased time for computing one hash
function can be compensated when the hash function num-
ber increases. We can conclude that more hash functions
used, the more time we can reduce for SIMD-version hash
functions. The comparison of murmur and its SIMD-version
has a similar result with lookup3. However, the murmur-
SIMD consumes 2.43 times the time of murmur for comput-
ing one hash function. The larger ratio (2.43 >1.78) comes
from that murmur uses many integer multiplications, but
the AVX instruction set has a relatively poor support for
vector integer multiplication.

5.3 Membership Check Speed Evaluation

We compare three Bloom filters, SBF [20], OMBF [22], and
OHBEF [24], with our proposed UFBF. OMBF and OHBF are
two state-of-the-art Bloom filter variants which attempt to
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(b) dataset2, negative check
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(d) dataset2, positive check

Fig. 5. The membership check speed of the four Bloom filters: SBF,
OMBF, OHBF, and UFBF. MSPS stands for millions searches per sec-
ond. We set n = 10°,m = 10°. The load factor is 2 = 0.1. Each point in
this figure is the mean of 1,000 experiments. We implement 1,000,000
queries in each experiment.

reduce the membership check overhead of Bloom filters.
OMBEF attempts to reduce the memory overhead, while
OHBF attempts to reduce the hash computation overhead.
UFBF makes improvements to reduce both memory
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Fig. 6. The membership check speed of the c-UFBF when £ is set to dif-
ferent values. We set m = 10"',% = 8. The load factor is - = 0.04. Each
point in this figure is the mean of 1,000 experiments. We implement
1,000,000 queries in each experiment.

overhead and hash computation overhead at the same time.
By using SIMD instructions, UFBF can achieve parallel bit-
test in membership check, which reduces the complexity of
bit-test process from O(k) to O(1). With these advantages,
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Fig. 7. The membership check speed of the four Bloom filters: SBF,
OMBF, OHBF, and UFBF. We set k = 8. The load factor is ** = 0.1. Each
point in this figure is the mean of 1,000 experiments. We implement
1,000,000 queries in each experiment.

UFBF is expected to improve the membership check speed
effectively. We use two datasets listed in Table 4 to conduct
our experiments. In the experiments, negative check means
checking an element not in the set, while positive check
means checking an element in the set. We use MSPS (Mil-
lions Searches Per Second) as the unit of membership check
speed in the following experiments. The bit array of Bloom
filters is cache-line size aligned. The inserted items (that are
encoded to Bloom filters, called encoded-set) are selected
randomly from the two datasets (5M and 50M). The queries
are selected differently for positive-check and negative-
check experiments. In the positive-check experiments, we
repeat lookup the items in the encoded-set several times. In
the negative-check experiments, the queries are selected
randomly from items which are not in the encoded-set.

Fig. 5 presents the membership check speed comparison
of the four Bloom filters, SBF, OMBF, OHBF, and UFBF. We
can see that the check speed of SBF, OMBF, and OHBF
shows an decreasing trend. This is because SBF, OMBF, and
OHBF implement membership check using a sequential bit-
test process, and there are more membership bits to check
on average with the growth of k. While our UFBF presents a
(nearly) constant check speed in these experiments due to
parallel hash computation and parallel bit-test in member-
ship check. The small jitters of check speed in UFBF comes
from the different cache efficiency for different values of k&
(discussed in Section 3.4). For SBF, OMBF, and OHBEF, posi-
tive check has more membership bits to check (and more
hash computations correspondingly) on average than
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Fig. 8. The membership check speed of the c-UFBF when c is set to dif-
ferent values. We set m = 109, —‘ = 4. The load factor is 2 = 0.1. Each
point in this figure is the mean of 1 ,000 experiments. We implement
1,000,000 queries in each experiment.

negative check, therefore positive check is slower than nega-
tive check. For UFBF, positive check and negative check both
test all membership bits in parallel, therefore positive check
and negative check have (nearly) the same speed. As the
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Fig. 9. The false positive ratio of UFBF, n = 10000, w = 4,k = 4. Each
point in this figure is the mean of 1,000 experiments.

CPU’s cache size (64 Mbits) is larger than Bloom filer bit
arrays’ size (1 Mbits) and OMBF mainly aims to improve the
cache efficiency of Bloom filters, OMBF only has slightly
faster check speed than SBF in these experiments. As OHBF
reduces the hash computation overhead a lot and cache effi-
ciency is not a big issue in these experiments, OHBF has
faster membership check speed than SBF and OMBF.
While UFBF takes both hash computation overhead and
cache efficiency into consideration and improves the bit-
test speed, UFBF has the fastest membership check speed
in the four Bloom filer variants. When k£ = 8, UFBF dou-
bles the membership check speed than SBF in negative
check, and it has four times the membership check speed
of SBF in positive check.

Fig. 6 presents the membership check speed comparison
of the four bloom filters, SBF, OMBF, OHBF and c-UFBF. We
can see that the membership check speed of the four bloom
filters shows an decreasing trend. For OHBF, OMBF and
SBF, the lower check speed has been explained previously.
For c-UFBF, when £k is greater than 8, c-UFBF has to perform
extra SIMD instructions to conduct the membership check
process. However, due to parallel hash computation and
parallel bit-test, c-UFBF shows the highest membership
check speed than the other three bloom filters when a large k
is set.

Fig. 7 presents the negative and positive membership
check speed comparison of the four Bloom filters, SBF,
OMBF, OHBF, and UFBF, when m varies. The L1, L2, and
L3 CPU cache sizes are annotated. We can see that the mem-
bership check speed of the four Bloom filters is nearly con-
stant when the CPU has adequate cache (m < L2-Cache),
and it drops slowly when the CPU cache is not so adequate
(L2-Cache < m < L3-Cache). The membership check
speed drops quickly when the CPU cache is not enough
(m > L3-Cache) to accommodate the bit array. As UFBF
improves the cache efficiency in its design, it outperforms
the other three Bloom filters on membership check speed,
whether the on-chip memory is enough to accommodate
the bit array or not. Since OHBF's design does not consider
the cache efficiency, its membership check speed drops
sharply when the bit array size (m) approaches the size
of L3-Cache.

Fig. 8 presents the membership check speed comparison
of c-UFBF with different configurations. For a same dataset,
the positive check and negative check have different perfor-
mance trends when the load factor increases. In positive
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Fig. 10. The false positive ratio of c-UFBF when ¢ = 2,n = 10000,
w = 4, k = 4. Each point in this figure is the mean of 1,000 experiments.

check, the check speed is (nearly) constant when c is fixed
and load factor varies. Another feature in positive check is
that the check speed decreases when c increases. The reason
is that the membership check overhead is proportional to ¢
in c-UFBEF, as discussed in Section 4.2. In negative check, the
check speed is (nearly) constant when ¢ = 1, but the check
speed decreases when ¢ = 2, 3 and the load factor increases.
When ¢ =1, the c-UFBF is equal to UFBF, it only has to
check just one block to make sure whether an element is in
the set or not. However, when ¢ > 1, c-UFBF has to check
the ¢ blocks one by one and stop the search process once a
block’s membership bits are not all ones. So the check speed
is inversely proportional to the average number of blocks
needed to access. Obviously, the average number of blocks
needed to access increases with the growth of load factor, as
more ones are inserted to the bit array.

5.4 False Positive Evaluation

We make two experiments on false positive ratio evaluation.
Fig. 9 presents the comparison on false positive ratio
between theory and simulation results of UFBF. We can see
that the two simulation results on two datasets exactly
match the theoretical analysis, which validates the false pos-
itive probability analysis of UFBF in Section 3.5. Fig. 10
presents the comparison on false positive ratio between the-
ory and simulation results of c-UFBF when ¢ = 2. Again the
the two simulation results on two datasets exactly match
the theoretical analysis, which validates the false positive
probability analysis of c-UFBF in Section 4.1.

6 CONCLUSIONS

In recent years, Bloom filters have been widely used in all
aspects of the network applications due to their simplicity
and efficiency. However, with the rapid development of
network technology, increasingly strict requirements on the
network speed and latency are put forward, which goes
beyond the ability of traditional Bloom filters. In this paper,
we propose a new Bloom filter variant called Ultra-Fast
Bloom Filter, which has significant advantages over tradi-
tional Bloom filters in three key factors, i.e., hash comp-
utation, membership bit-tests, and cache efficiency. We
develop a novel hash computation algorithm, which can
compute the hash functions in parallel with the use of SIMD
instructions. Again, by the use of SIMD instructions, the tra-
ditional sequential bit-test process is changed to parallel bit-
test process. Since SIMD instructions are widely supported
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by most of the modern CPUs, our UFBF design has a very
good application prospect. The UFBF also has good cache
efficiency as it encodes an element’s information to a small
block which can easily fit into a cache-line. Numerical
results show that the UFBF has a higher false positive rate
in most of the settings. However, compared to its improve-
ment in performance, the tradeoff is absolutely worthwhile.
Further, we introduce a generalization of UFBF, called c-
UFBF, which has better scalability in terms of the number of
hash functions. Actually, the c-UFBF is a tradeoff between
UFBF and SBF. Either in terms of the false positive probabil-
ity or the membership check overhead, the performance of
c-UFBF is between UFBF and SBF.
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