T-cache: Dependency-free Ternary Rule Cache for
Policy-based Forwarding

Ying Wan*, Haoyu Song!, Yang Xu!¥, Yilun Wang*, Tian Pan®, Chuwen Zhang*, Bin Liu*|
* Tsinghua University, China T Futurewei Technologies, USA ! Fudan University, China
I Peng Cheng Laboratory, China § Beijing University of Posts and Telecommunications, China
T Engineering Research Center of Cyber Security Auditing and Monitoring, Ministry of Education of China
{wany16, yl-wang15} @mails.tsinghua.edu.cn, {chuwen1992, shykcl, Imyujie } @ gmail.com
xuy @fudan.edu.cn, pan@bupt.edu.cn

Abstract—Ternary Content Addressable Memory (TCAM) is
widely used by modern routers and switches to support policy-
based forwarding. However, the limited TCAM capacity does not
scale with the ever-increasing rule table size. Using TCAM just as
a rule cache is a plausible solution, but one must resolve several
tricky issues including the rule dependency and the associated
TCAM updates. In this paper, we propose a new approach which
can generate dependency-free rules to cache. By removing the
rule dependency, the TCAM update problem also disappears. We
provide the complete T-cache system design including slow path
processing and cache replacement. Evaluations based on real-
world and synthesized rule tables and traces show that T-cache
is efficient and robust for network traffic in various scenarios.

I. INTRODUCTION

Policy-based forwarding uses a set of packet header fields
as the flow ID to match against a predefined rule set and
applies the associated policy of the best match to the packet.
Today, as the Software-Defined Networking (SDN) [1], [2]
prevails, network operation is evolving to be more and more
application-aware and service-oriented. As an indispensable
component in modern routers and switches, policy-based for-
warding plays the roles far beyond the conventional Access
Control List (ACL) [3] and Firewall (FW). To name a few,
Service Function Chaining [4] uses the rule set to classify
network traffic and apply different service chains to different
flows; Segment Routing [5] uses the rule set to forward packets
on different paths with a source routing mechanism; Network
Slicing [6] uses the rule set to assign user flows to different
virtual layers which bear different QoS treatments; Network
Telemetry [7] uses the rule set to pick specific packets for
behavior monitoring and performance measurement.

However, policy-based forwarding is also a notoriously
challenging problem. A rule is usually an aggregation of
multiple flows and rules may overlap. As a result, a packet can
match multiple rules and the best-match resolving is necessary.
This process needs to be fast enough to sustain the line-speed
forwarding. Unlike the address-based forwarding, traditionally
it lacks efficient algorithmic solutions to sustain the ever-
increasing network throughput which is now in the magnitude
of terabits per second per device. The recourse to TCAM is

This work is supported by NSFC (61432009, 68172213, 61702049).
Corresponding Author: Bin Liu (Imyujie@gmail.com).

effective for now but it has long been criticized for high power
consumption, high cost, and poor scalability.

The imminent end of Moores Law [8] implies that we must
accept the limit on the TCAM capacity in a single chip as
a starting point to design a policy-based forwarding system
that can meet the throughput and service requirements. An
embedded TCAM with around ten thousand entries is at the
upper end of affordability, while the network services need to
handle tens of thousands of rules and millions of flows. The
pressing issue of scalability begs for new solutions.

We have two options to this end: 1) Make better use of the
available TCAM resource through architectural optimizations
or 2) Seek alternative algorithmic solutions which can replace
TCAM with cheaper and relatively abundant memory such as
eDRAM and SRAM.

The first option is the current research focus. The key idea
is to use TCAM as a rule cache on the fast path to hold only
a subset of rules. Those packets that cannot find a matching
rule in TCAM are punted to the slow path (e.g., the control
CPU) for forwarding decision. The rationale of this approach
comes from the observation that the typical traffic presents
a strongly skewed distribution: a small percentage of active
flows claim most of the traffic while a long tail of active flows
contributes just a small portion of traffic [9], [10]. It follows
that the “hot” rules matched by majority packets at any time
are only a small subset of the rule set. If we keep only hot
rules in TCAM dynamically, a much larger rule table can be
supported without compromising the throughput.

Our work follows this suit, yet we make several critical
design decisions and develop the corresponding algorithms
which make our system significantly outperform the existing
works in terms of cache hit-rate and update speed. The novelty
and superior performance of the resulting T-cache system
mainly lie in two points. First, the system constantly measures
the heat of rules and keeps only the “hottest” rules in TCAM,
which ensures the best possible cache hit-rate. Second, the
rules in TCAM are purposely made dependency-free (i.e., no
rule overlaps) through an isolate-rule construction process so
the TCAM update is trivial and the cache hit-rate is boosted.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 22,2023 at 12:38:07 UTC from IEEE Xplore. Restrictions apply.

36

@
o

gof e 2
D801 T cmonepeaeet Y60
€ | /7 e €
=701 S Xx* = 7
% 45 40
© 604/ = ©
o iy - IP Flow °
= [-s¢- 5-tuple Flow = +
&%t & 204
404
1 2 3 a 000 025 050 075 1.00 125 1.5

Ratio of Flows (%) Ratio of IP Flows (%)

(a) Equinix from CAIDA (b) CERNET from IPTAS

Fig. 1. Temporal locality of real-world network traces.

Hitted 25 DS = ¢S
1000 2500

~
a
=)

¢ 2000
2
=]
2 1500

: AN
‘5 1000 SR 5 E §
AR 1 B 4

1 g%
10 10' 102 10® 10* 10° 2
of Top Flows

u
=3
S

of Matched Rules
~
&
3

o

4 6
of Top Flows (K)

Fig. 2. Spatial locality of flows. Fig. 3. Expansion of cached rules.

II. BACKGROUND

To have an effective rule caching system for policy-based
forwarding, some conditions need to hold and several chal-
lenges need to be addressed.

A. Viability of Rule Caching

We need to ensure a small TCAM cache populated with the
hottest rules can indeed handle a large enough portion of total
traffic. In other words, the traffic punted to slow path needs to
be small enough to not inundate the slow path processor and
the overall line-speed forwarding can be guaranteed.

We study rule sets and traffic traces from various real
network environments and find that the network traffic flows
generally follow a Zipf distribution [11] at any given time.

An archived CAIDA Internet traffic trace was collected from
an OC-192 backbone link of a Tier 1 ISP at Equinix datacenter
on March 15, 2018 at 13:00 UTC [12]. The trace lasts one
minute and the number of concurrent 5-tuple flows reaches
10%. We measure the accumulated traffic ratio contributed by
the top flows. Fig. 1(a) shows that 70% of traffic attributes to
the top 1% of flows. Similar results hold for the CERNET
IP traces collected by IPTAS on March 8, 2018 at 12:56
CST [13], as shown in Fig. 1(b).

Numerous previous studies also confirm the existence of
such temporal locality [9]-[11], [14]-[19]. In addition, we
notice that the traffic also presents spatial locality. The flows
tend to cluster in the matching space, making multiple flows
match the same rule. As shown in Fig. 2, with more than 10°
concurrent IP flows and 760K rules for the Equinix trace and
table, the number of the matching rules is only 1,126. Similar
findings are reported in some previous works [15], [18].

Such temporal and spatial locality of flow distribution is
critical to supporting a TCAM-based rule cache.

B. Rule Dependency

Although we have established the viability of rule caching
with TCAM, TCAM’s unique features make the actual imple-
mentation of such a cache complex and challenging.

Since the ternary rules may overlap, if a rule r is to
be inserted into TCAM, all the precedent rules of 7 in the
dependency graph of the rule set, even if some of them are
cold, must be loaded into TCAM with r simultaneously for
the correctness of lookups. These rules form the dependent-
set (DS) of r [20]. Apparently, the need of loading the whole
dependent-set defies our design principle and causes ineffi-
ciency in terms of TCAM space and operation. A measurement
in [15] shows that, in a rule set generated by ClassBench [21],
the average number of dependent rules for each rule is 350.

CacheFlow [20] alleviates the challenge of dependent-set
to some extent by introducing the concept of cover-set (CS).
A rule r’s cover-set is composed of the rules that directly
overlap with r in r’s dependent-set. Only the rules in r’s cover-
set are to be loaded into TCAM along with r. To ensure the
correctness, however, the matching action for rules in a cover-
set must be modified to punt the matching packets to slow
path which contains the entire rule table for further lookups,
essentially making a match on any rule in a cover-set a cache
miss. Since TCAM avoids storing full dependent-sets, the
saved TCAM space can be used to cache more hot rules and
the overall cache hit-rate is expected to improve. However, the
effectiveness of this optimization heavily relies on the length
of the dependency chain. In case the dependency graph of r
has a large fan-out but short paths, the benefit is limited.

A test on the Equinix datacenter on March 15, 2018 at 13:00
UTC exemplifies this point. As shown in Fig. 3, in a minute the
top 2K flows only hit 332 rules out of the 760K rules. The
number of matching rules increases at a much slower pace
when more top flows are considered, in favor of good cache
performance. However, due to the rule dependency, caching
these hot rules in TCAM actually requires 1,971 rules to be
cached to cover the dependent-set. The expansion ratio is
almost six times. The cover-set optimization does not help
much: 1,892 rules remain to be cached.

The above optimizations also complicate the cache replace-
ment. Multiple rules need to be evicted and care needs to be
taken to avoid destroying the dependency relationship among
rules in the cache. If a rule is evicted, all its descendent rules
in the dependency graph of the rule set must be evicted too.

C. TCAM Insertion and Update Challenges

A more challenging problem is inserting new rules into the
cache. Due to the priority order requirement of overlapped
rules, a rule r cannot be inserted into an arbitrary TCAM
entry. All the descendent and precedent rules of r» in TCAM
must be identified so that r can be inserted in between. If
no such entry is available, a series of entry moves which
requires complex calculation is necessary [20]. The calculation
consumes the slow path computing resource; the updates block
TCAM lookups; the delay stales the cache. Given that a high
and constant cache refresh rate is expected, the update issue

Authorized licensed use limited to: Tsinghua University. Downloaded on December 22,2023 at 12:38:07 UTC from IEEE Xplore. Restrictions apply.

37

80 === Top 0.1% Flows 90 §
- % /\ A i
(‘SQI.M% Top 0.5% Flows o N LA\ o TR A o B
X 2= Top 1.0% Flows A GO
60 Sobon 7) ¥ ;,’
S ““m”‘xw W 70 ¥
20 | ! e] ¥

VW s,

o
=]

WA,
R P

S P~ == Top 0.1% Flows

== Top 0.5% Flows
=== Top 1.0% Flows

N
o
=)

Unchanged Flows (%)

Ratio of Traffic (%)
P
S

o

o

10 20 30 40 50 60
Time (minute)

o

10 20 30 40 50 60
Time (minute)

(a) Variability of traffic of top flows (b) Variability of top flows

Fig. 4. High turnover of the top flows on Equinix trace

poses to be the major hurdle for realizing a TCAM-based rule
cache.

We show the inefficiency of TCAM updates by the average
number of TCAM entry moves due to a rule insertion. A
measurement in [22] shows that inserting a single ACL rule for
a 1K rule set generated by ClassBench [21] requires up to 466
entry moves. Although the state-of-the-art optimizations [22],
[23] require on average less than 10 entry moves per rule
insertion, these algorithms are time consuming, which require
hundreds of milliseconds to compute a moving scheme [24].

This update performance hardly meets the requirement of
cache refresh that is performed when a cold rule becomes hot
or vice versa. In fact, the traffic ratio contributed by a set of top
flows fluctuates greatly. Fig. 4(a) shows an example of traffic
ratio contributed by top flows over time on a real network
trace. When using a one-minute time window, the traffic
contributed by the initial 1% of top flows keeps dropping from
81% to 48% in an hour. Fig. 4(b) provides an explanation.
Only around 80% of the current top flows can keep its status
in the next time window. The high turnover of the top flows
leads to the high turnover of hot rules, requesting frequent
cache replacements or TCAM updates.

D. Cache Operation Mode

In a classic cache, any cache miss will result in an immedi-
ate cache replacement and the cache replacement only happens
on a cache miss. This operation mode does not quite suit the
rule cache. A missed rule in the cache may be cold. Moving a
cold rule into TCAM is at best useless and at worst harmful.
A good criterion for cache replacement is to always replace
colder rules with hotter ones whenever such a condition is
found based on the current traffic.

Therefore, the ideal rule cache should differ from the classic
cache in at least two aspects. First, the rule cache does not have
to load every missed rule into the cache when a cache miss
happens. Second, the system constantly seeks opportunities to
load rules that become hot into TCAM to replace rules that
become cold. Of course, the accurate measurement of rule
popularity is a must, which requires extra resources and work.
Nevertheless, this measurement-based approach is more robust
for a consistent and predictable rule cache performance.

III. RELATED WORK

TCAM is widely used for rule-based table lookup (e.g.,
routing [25]-[27] and packet classification [28]-[30]), and
becomes a standard component in SDN switches. However,

due to its high hardware cost and power consumption [20],
TCAM’s capacity is limited which may fail to accommodate
rule tables [31]. The inefficient support of ranges in TCAM
makes the situation worse [32]. Some researchers tackle this
issue by trying to compact the rule tables [33], [34]. Many
efforts are made to reduce the number of TCAM entries
needed to hold a rule with ranges [35]-[37]. This kind of
work does not fundamentally solve the problem as the gap
between the TCAM capacity and rule table size broadens.

Some other researchers thus turn their attention to the
direction of using TCAM as a cache. The pioneer works
mostly use TCAM to cache exact flows [32], [38], [39].
Caching exact flows, although simple, is an inefficient use of
TCAM. Dong et al. therefore try to merge some top flows into
ternary rules to improve the TCAM utilization [9]. However,
their scheme requires traversing all the generated rules in
TCAM to decide whether a newly identified top flow can be
merged in. This process, with the assumption of a stable rule
table, fails to keep up with the high churn rate of rules in
today’s SDN networks.

Recent works focus on caching popular rules, taking care of
the rule dependency issue with cover-set [20], [40]. Based on
CacheFlow [20], Sheu et al. design a sophisticated algorithm
to select the cached rules for better TCAM hit-rate [40].

However, these works overlook the potential performance
impact of TCAM updates due to rule insertion. Ding et al.
take the update cost of a rule into consideration when choosing
cached rules [41]. The TCAM operation optimization is at a
cost of lower TCAM hit-rate. Yan et al. resolve the rule depen-
dency issue by partitioning the field space into logical buckets,
and cache buckets along with all the associated rules [15]. Yu
et al. partition the rule set into new non-overlapping rules in
the controller and cache them into underlying switches [42].
These schemes are all computing-intensive.

The TCAM update issue persists as long as there is de-
pendency between the cached rules. It has been extensively
studied since TCAM is used for forwarding lookups [43]-
[45]. Some works optimize the update process by reducing the
redundant updates at the controller level [46]-[49]; some other
works aim to optimize the actual rule insertion process by
designing algorithms to avoid unnecessary entry moves [22]-
[24], [44], [45], [50]. These solutions either fail to achieve the
ideal TCAM entry move reduction [24], [44], [45], [50], or
require excessive computation time [22], [23].

IV. ISOLATE RULE

A critical question we ask is if we can eliminate the rule
dependency altogether at a low cost. If it is possible, both
challenges (i.e., dependent set and insertion update) disappear.

A strawman solution exists along this line of thinking.
Instead of considering the heat of rules, we can shift our focus
on the heat of flows, i.e., consider the flows that claim most
of the packets during a period of time. Now the rule caching
problem is transformed into a flow caching problem.

A flow can be imagined as a point in the multi-dimensional
space occupied by its best matching rule. Clearly, flows are

Authorized licensed use limited to: Tsinghua University. Downloaded on December 22,2023 at 12:38:07 UTC from IEEE Xplore. Restrictions apply.

38

independent and never overlap, so they can be stored in
arbitrary locations in TCAM. The only drawback is that storing
exact flows in TCAM does not take advantage of the “ternary”
aggregation feature boasted by TCAM. If the TCAM capacity
is m entries, then at best we can cache the top m flows. The
percentage of traffic composed by these flows determines the
upper bound of the cache performance.

Yet we can do better than this by introducing the concept
of isolate-space. For a flow f and its best matching rule r, we
define the isolate-space S,y as the sub-space of r that covers
f but does not overlap with r’s cover-set.

Assume we find that a flow f is hot enough to deserve a
cache entry. Instead of caching f or the dependent-set or cover-
set of f’s best matching rule r, we just find a single TCAM-
cacheable rule 7/, which is the largest multi-dimensional box
fully contained by S, r. We name 7’ an isolate-rule. Clearly,
r’ can be inserted into arbitrary TCAM entry due to its
independence and meanwhile 7’’s maximized volume allows
it to cover more fate-sharing flows.

Depending on where f is located in the space, the resulting
r’ may differ. In case two flows f; and fo, while sharing the
same best matching rule r, cannot be covered by a single
isolate-rule but both claim a cache entry, two isolate-rules
r; and 75 can be generated accordingly. These two isolate-
rules may overlap, but they can be considered independent
because they inherit the same action from r. This important
feature assures us that, at any time, when a new isolate-rule
is generated, we can freely insert it into any TCAM entry
without considering the existing isolate-rules in TCAM.

Of course, any updates on r and 7’s cover-set may nullify
one or more isolate-rules generated from 7. In this case,
to simplify the processing, we can simply remove all these
isolate-rules from TCAM.

A. Analysis of Isolate-rule Calculation

Since an isolate-rule occupies a continuous space and can
be stored by a single TCAM entry, it is easy to see that each
dimension of the isolate-rule can be represented as a prefix or
an exact value (an exact value is a special case of prefix).

We assume all the rules in the original rule set are also
prefix-based. As a common practice, any range-based rule can
be converted into a set of independent prefix-based rules.

Let f] denote the range length on the rule r’s i-th dimension
of the k£ dimensions. If the full range of the rule set’s i-th
dimension covers L; bits, let [] denote the length of the prefix
representing 7’s range on ¢-th dimension. The volume of r is:

k
V(r) = [[S = 200 e 77 = 98t ton 1! "
=1

_ X (Li—ly) _ gL-X0h 1

If f’s best matching rule is r and C(r) represents the cover-
set of r, we introduce Lemma 1 and Lemma 2 to explain the
method to calculate 7’

Lemma 1. For any rule r; in C(r), f mismatches it on at least
one dimension.

Proof. This is obvious. If f matches r; on every dimension,
r; should be f’s best matching rule because r; has a higher
priority than 7. |
Lemma 2. For any rule r; in C(r), if f mismatches r; on the
i-th dimension and the position of the first bit that makes f
mismatch r; is x, x must be larger than [7.

Proof. This can be proved by contradiction. If x < [, the
z-th bits of r and r; on the i-th dimension are different. This
means 7 does not overlap with r; on the i-th dimension, so
r; cannot belong to C(r). |

Since 7’ is fully contained in r, we know that, for each
dimension ¢, l{/ > [7 and the first {7 bits of ' must be equal
to that of 7. Since r’ covers f, the first l{/ bits of ' on the
i-th dimension must be equal to the corresponding bits of f.
Our goal is to maximize V(') without causing any overlaps
between 7’ and rules in C(r).

Basically, Lemma 1 and Lemma 2 tell us that it is possible
to eliminate the overlap of v’ and a rule in C'(r) by increasing
{Zf'} on any mismatched dimension. Note that two rules are
not overlapping in the space if they are not overlapping on
any dimension.

Since 7’ can mismatch a rule in C(r) in multiple dimen-
sions, there are multiple possible ways to eliminate the rule
overlap. Since the overlaps between 7’ and all the rules in
C(r) must be avoided, a multitude of combinations of {II"}
need to be evaluated to maximize V (r').

Now we prove the NP-hardness of the problem. Given
a flow f, its best matching rule r, and r’s cover-set
C(r)={r1,...,mn}, we calculate {C;q}, a subset of C(r),
which includes rules that will not overlap with / if I’ is set
to d+I]. The problem of maximizing V(') while avoiding
the overlaps between ' and rules in C(r) can be translated
into the following problem: Find a sub-collection £ of {C; 4}
that satisfies two requirements: (1) Uc, ;e Ciq = C(r); and
2) Zci ,ec @ is minimized.

The ﬁroblem can be deduced from a Weighted Set Cover
Problem (WSCP) [51], which has been proved to be NP-
hard. WSCP is formulated as follows. Given a finite universe
U =1{1,2,...,n} of n members, a collection of subsets of I
that S = {s1, S2, ..., Sm }AVi, $;CU, and a weight function
w:s—RNT that assigns a positive real weight w; to each subset
S;, the goal is to find the minimum weight of subcollection of
S whose union is U.

For a given instance of WSCP, we construct an instance
for calculating the isolate-rule in the following manner. Each
element ¢ in & is mapped to a unique rule r; of C(r). Thus,
each subset s; with the weight of w; corresponds to the subset
Ciw, of C(r). Since WSCP is NP-hard, we cannot find a sub-
collection of {C; ., } that their union equals to C(r) and the
sum of their weights is minimized in polynomial time.

Although the problem of calculating the isolate-rule is NP-
hard, due to the limited search space, the optimal solution can
still be found quickly through exhaustive search. Some features
backed by Lemma 3 and Lemma 4 in the next section can be
used to accelerate the search process.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 22,2023 at 12:38:07 UTC from IEEE Xplore. Restrictions apply.

39

Rule Table 00000 MF2 . ®
Rule | Priority F1 F2 11110 | .f
R1 1 Ok R '
R2 2 SO0 101%* 11000 H | @

R2
R3 2 000* 1111* 10100 @
Popular Flow RI
10000 Fl
[Fwid | F1L_ | P | v

f | ouo | 1rior |

(a) A rule table and a flow. (b) Rule space and dependency graph.

Fig. 5. An example of calculating isolate-rule.

B. Algorithm for Isolate-rule Calculation

The pseudo code of isolate-rule calculation is given in
Algorithm 1. We use Fig. 5(a) as an accompanying example
to explain the Algorithm 1. As shown in Fig. 5(a), f’s best
matching rule is R1 and C(R1)={R2, R3}. (f, R1, C(R1))
is used as input to Algorithm 1 to generate the isolate-rule 7.

Algorithm 1 first calculates d:j for 1<i<k and 1<j<n in
which k is the number of rule dimensions and n is the number
of rules (Line 2). d:" represents the least number of bits of
r’ that needs to be further specified based on r on the i-th
dimension in order to avoid the overlap between r’ and r;. In
our example, f mismatches R3 at the second bit position on
the first dimension F'1, so df¥3=2—1£1=1. This means, 7’ only
needs to extend R1’s prefix length on F'1 by one to avoid the
overlap between 7’ and R3. For another example, f matches
R2 on F1, so df*2=c0, which means the overlap between 7’
and R2 cannot be eliminated no matter what prefix length r’
takes on F1. Similarly, the results of df*? and d&3 are 1 and
3, respectively.

Algorithm 1 then calculates a collection of subsets of C(r),
C={C;.q} from {d;’} (Line 3). C;q consists of the rules
that will not overlap with ' if I’ is set to I[/4d. In our
example, Cq1={R3}, C21={R2}, and C; 3={R2, R3}. Note
that it is unnecessary to calculate C; 4 for every ¢ and d (e.g.,
Cs,0={ R2}) according to Lemma 3.

Next, Algorithm 1 searches for a sub-collection £, of C by
calling the function SolutionSearch(1,L:,L,). L, should meet
the following requirements: (1) The union of £,’s elements,
Ur,, equals to C(r), and (2) The sum of d of L,’s elements,
Wre,, is minimized among all possible £, that meets the
first requirement. Starting from the first dimension, the search
progresses through all the dimensions.

According to Lemma 4, C; 4, and C; 4, for the same di-
mension ¢ will not be included in £, together. Hence, for each
dimension ¢, £, either includes just one C; 4 or none (Line 13)
which means [" is identical to [7. During the search, if the
current W, is equal to or greater than W, _, there is no need
to continue the evaluation on this dimension and proceed to the
next dimension. Instead, we should turn back to the previous
dimension and continue searching from there, because the
optimal £, does not exist in the skipped search space. In
fact, this is also why Algorithm 1 uses Zc,z,dec d instead of

Zk l’f/zzk lr"‘Zci ,ec d to measure the quality of L.

i=1% i=1"%
Although there is no fundamental difference between the two
parameters since Zle [7 is a constant, we are in favor of

the first one because the second one always needs to search
every dimension. In our example, three candidate solutions
£1={C1,1,C271}, £2={C1,1,C273}, and £3={C273} are possible.
However, £ should be chosen as the final solution because
ng <VV£3 <VV£2 .

Now Algorithm 1 can generate v’ based on r, f, and L,. It
first determines the prefix length of 7’ on every dimension. For
a dimension i that I7 >I7, the first [bits of f is taken as the
prefix of ' on dimension 4. It specifies those bits according to
the values of corresponding bits of f, which ensures f to be
covered by 7. In our example, l{/ is 2 so the first dimension
of 7/ is 01x*. Similarly, the second dimension of 7/ is 11 x .
The resulting 7’ is illustrated by the dotted box in Fig. 5(b).

Algorithm 1 uses the following lemmas to optimize the
process.

Lemma 3. It is unnecessary to calculate {C; 4} for every d
that 0<d<L;—I]. Instead, calculating {C; 4} for every d:d:j
that satisfies 7;€C(r) is enough because £, will include only
C;.q for which d=d’.

Proof. This can be proved by contradiction. If £, is the
optimal solution for ' and it includes one C; 4 that d' is
not equal to any d;’ for which r;€C(r). In such a case,
we can find the Ci, g that d;’ is the largest one less than
d'. According to the definition of Cia> Ciwr and C, ; are
identical. Therefore, we can use C, ,~; to replace Cz-7d7/ in £,
and the corresponding solution is reasonable and better than
the original £,, which contradicts our assumption. |
Lemma 4. £, will never include two elements, C; 4, and C; 4,,
from the same dimension.

Proof. This can be proved by contradiction. Assume L, is the
optimal solution for 7’ and £, includes two elements C; 4, and
Ci.d,- If d1<da, it is easy to see that C; 4, CC; 4,, SO We can
remove C; 4, from £, and the resulting solution is better than
the original £,, which contradicts our assumption.]

V. T-CACHE ARCHITECTURE
A. Find Cold Rules in TCAM

T-cache only caches isolate-rules. To maintain the freshness
of the cache, we need to constantly identify the rules that are
getting cold in TCAM, creating opportunities for new hot rules
to be swapped in. Each entry in TCAM has an associated
counter which records the number of times the rule in the
entry is matched since the last read to the counter. A rule is
considered to be cold if during a period of time, its matching
counter is smaller than a threshold.

The logic of cold rule identification is implemented in
hardware. A lightweight hash table H is used to keep track
of the cold rules in TCAM. H contains 2" buckets with each
holding a cold rule’s entry address. The hash function simply
takes the lower k bits of the TCAM entry address as the index
to map an entry to H. Therefore, given a TCAM with m = 2"
entries, 2"~ % entries are mapped into a single bucket in H,
and only the upper n — k bits of the entry address need to be
stored in H to uniquely identify a TCAM entry.

In addition to the address bits a, each bucket also contains
a flag field v and a counter field c. The 1-bit flag v is used

Authorized licensed use limited to: Tsinghua University. Downloaded on December 22,2023 at 12:38:07 UTC from IEEE Xplore. Restrictions apply.

40

Algorithm 1: Isolate rule (f, v, C(r))

1 O(_T):{Tla -~-J‘n}v Ti:(1”7 e flzl)’ f::(1”7 Sy f]:L)

2 d;’:f mismatches r; in the 7 +d.’ bit of i-th dimension
3 C={Cia}, Ci.a={rjlr;€C(r),d;’ <d}, 1<i<k, 1<d<L;
4 L: subset of C; U,: union of £; W,: sum of d in L;

5 ACO:{CLLI, CQ’LZ, s Ck,Lk}’ L; = @ //initialization

6 SOLUTIONSEARCH(1, L, L,)
7
8
9

r'<~RULEGENERATION(T, f, L,)

return r’
Function SolutionSearch(i, L;, L,)
10 if >k then return;
11 if Uy, =C(r) then L, L4;
12 else
13 SOLUTIONSEARCH(i+1, Ly, L,)
14 for C; 4 € C in d’s ascending order do
15 if We,+d<W,, then
16 L SOLUTIONSEARCH(i+1, £:UC; 4, L,)
17 else break;

18 Function RuleGeneration(r, f, L,)
19 for (i=1, i<k, i=i+1) do

2 if Ciq € L, then 17'=I7+d else I7' =I7 ;
21 | specify f{'/ according to f and r
22 return 7’

Algorithm 2: Identify Cold Rules
Input: C[:] : counters of the 2" TCAM entries
1 //H[:]: a hash table with 2¥ buckets
2 for (addr=0; addr<2™; addr++) do
3 ha=addr[n:k], la=addr[k:0]
if H[la).v=0 then
L Hlla]lw=1, Hlla].a=ha, H[la].c=Claddr]
6 else if H[la].a == ha then
7 L H{la].c=Caddr]

8 else if H(la].c > Claddr] then
9 | H[la].a=ha, H|la].c=Claddr]

4
5

to indicate if the bucket contains a valid TCAM entry. The
counter ¢ holds the counter value of the hashed TCAM entry.

Algorithm 2 describes the hash table insertion and update
process. The TCAM entry counters are read in a round robin
fashion. For each entry, its corresponding bucket in H is
examined. If the bucket is empty (i.e., v="0"), vis set to ‘1’ and
a and c of the current entry is filled into this bucket. Otherwise,
if the bucket is holding the information of the current entry
(i.e., a matches the upper n — k bits of the entry address), ¢
is updated with the new counter value. In case neither is true,
the entry’s counter value is compared with c. If the entry’s
counter value is smaller, a and c are updated with the entry’s
address and counter.

This process cannot produce the globally optimal results
but it readily picks out the coldest rule for every 2" % rules

258 7 B
V¥ ¥
[Bo[Bi[Bo| -] Bi| | Buil

(ot 3| [t D b0, 2>
(Gt —(F5. 1. D)
— (2. t1.)
| o) | [9>

Fig. 6. Using hash-based flow table to detect the hot flows in slow path.

in TCAM, which is good enough for our purpose.

The hash table read process is also in a round robin fashion
but it is asynchronous with the insertion and update process.
Whenever a new isolate-rule is generated, the software will
request for a new TCAM entry, which is acquired by consult-
ing the next bucket in H. The bucket is cleared (i.e., v is reset
to ‘0’) after the read.

B. Find Hot Flows in Slow Path

A flow is considered to be hot if the number of packets of
it exceeds a threshold in a period of time or an epoch. Among
the packets punted to the slow path, the software constantly
identifies the hot flows that are not yet covered by the fast
path, in order to generate and cache isolate-rules for these
flows and alleviate the slow path’s forwarding load.

We use a flow table to keep track of active flows and figure
out the hot flows among them in slow path. The flow table is
implemented as a g-way hash table (i.e., each hash bucket can
hold ¢ flow records) as shown in Fig. 6. Each flow record is
composed of three fields: the flow ID f, the epoch number ¢,
and the packet counter c.

For each packet handled by the slow path, its flow ID is
extracted and used to consult the flow table. If the flow is new
(i.e., no matching record in the corresponding hash bucket)
and there is still an empty slot in the bucket, the flow ID
with the current epoch number and the counter value of 1 is
recorded in the slot (e.g., fs). In case no empty slot is available
for the new flow (e.g., f7), an existing flow record needs to
be overwritten. The record with the oldest epoch number is
chosen as the victim. If there is a tie, it is broken by choosing
the record with the smallest counter value (e.g., f1).

For the packets whose flow record is found in the flow table,
if its epoch number is current and its counter value reaches
the threshold, a hot flow is identified (e.g., f3). Otherwise, if
the epoch number is outdated, it is updated to the current and
the record’s counter value is reset to 1 (e.g., f5). If neither
condition is met, the counter is incremented (e.g., f2).

Our algorithm takes O(g) time to locate and process a
flow record. The time complexity can be reduced to O(q/4)
by applying the single instruction, multiple data (SIMD)
technique provided by the advanced CPU architecture [52].

C. Rule Table Lookups in Slow Path

Rule table lookups are needed for the packets punted to
the slow path to make forwarding decisions. A large number

Authorized licensed use limited to: Tsinghua University. Downloaded on December 22,2023 at 12:38:07 UTC from IEEE Xplore. Restrictions apply.

1

cache miss

Rule
Table
Lookups

Hot Flow
Finder

Cold
Rule
Finder

1
TCAM entry
[

packet [(@\V]

Lookups

S EIEGUEN matching rule

Generator

isolate-rule

Fast Path Slow Path

Fig. 7. The overall architecture of the T-cache system.

of algorithmic solutions are available [31]. We adopt the
simple decision-tree based algorithm HiCuts [53] and avoid
any sophisticated optimization for the following reasons: 1)
The software forwarding load is light thanks to the existence
of T-cache; 2) The memory in software is abundant; 3) The
rule table updates may be frequent.

D. Put Everything Together

Fig. 7 shows the overall architecture of the T-cache system
with the omission of the rule table update process. Any miss
on the fast-path TCAM triggers a slow path lookup on the rule
table. Meanwhile, the fast path keeps track of the cold rules in
the cache and the slow path monitors the emerging hot flows.
Once a new hot flow is identified, an isolate-rule is generated
for it. After acquiring a TCAM entry from the cold rule table,
the isolate-rule is installed to the TCAM. To cope with the
cold start, we set a low threshold for the hot flow identifier at
the beginning until TCAM is sufficiently populated.

VI. IMPLEMENTATION AND EVALUATION
A. Experimental Setup

We compare the isolate-rule (IR) based T-cache with the
cover-set (CS) and dependent-set (DS) based TCAM cache
schemes through software simulation. The CS-based scheme
is essentially CacheFlow [20]. These schemes are implemented
using C/C++ language and compiled by g++ with -O2 opti-
mization. We run the simulators on a commodity server with
the Ubuntu 16.04-LTS operating system.

B. Dataset

The rule tables and packet traces used in our experiments
are shown in Table L.

TABLE I
DATASETS USED IN OUR EXPERIMENTS
Propert;

Name Source Policy perty Trace
Equinix CAIDA real-world, DIP real-world
Stanford | Stanford Backbone real-world, DIP synthetic

ACL ClassBench-ng synthetic, 5-tuple synthetic

FW ClassBench-ng synthetic, 5-tuple synthetic

CAIDA. The Equinix datacenter routing table [12] includes
760K IP prefixes. The timestamped packet trace contains 1,521

TABLE II
POLICIES AND TRACES GENERATED BY CLASSBENCH-NG

Type | # of Policy | # of Rule | # of Packet | # of Flow
ACL 19.9x10% | 27.9x103 1.14x107 8.87x10°5
FW 18.4x10% | 80.4x10% 1.84x107 1.14x10%6

million packets during a 60-minute window from 13:00 UTC
on March 15, 2018.

Stanford Backbone. The routing table is downloaded from
a Cisco router on the Stanford backbone network [54]. Lacking
a real packet trace, we use ClassBench-ng [55] to generate
a trace with 93 million packets based on the routing table.
Since the ClassBench-ng is designed for 5-tuple rules only,
the single field input makes the output trace packets vary only
in the destination IP address, following a Zipf distribution.
The packet trace is not timestamped.

ClassBench-ng. It is difficult to access real-world multi-
field rule sets due to security concerns, so we resort to
ClassBench-ng to generate several synthetic ones, namely
Access Control List (ACL) and Firewall (FW), with each
having the characteristics matching the real-world rule sets.
The rules that cannot be stored in a single TCAM entry are
transformed into a set of prefix-based rules as a common
practice. An accompanying packet trace is also generated for
each rule set. A drawback of synthetic traces is that they do
not present enough spatial locality, making the tests based on
them only partially exhibit T-cache’s potential. The synthetic
rule sets and packet traces are summarized in Table II.

C. Experimental Results

TCAM Hit-rate. Suppose the traffic distribution is known
in advance and the hottest rules at each moment are cached
in TCAM. This allows us to test the best-case TCAM hit-rate
for IR, CS, and DS.

Fig. 8(a) shows the achieved TCAM hit-rates on CAIDA
in one-minute time windows. When the TCAM size is 1.2K,
DS and CS achieve only 50% and 52% TCAM hit-rate,
respectively, while IR can achieve a hit-rate more than 95%.
This is because DS and CS both need to cache some extra
rules which are actually cold. We also notice that CS is only
slightly better than DS in this case.

Fig. 9 explains the finding from another angle by showing
the number of rules needed for each method to ensure different
number of hot flows to hit the TCAM. The top 1K flows
require DS, CS and IR to cache 1,895, 1,725, and 322 rules,
respectively. An isolate-rule in IR can cover about 3 hot flows.

Fig. 8(b) shows the achieved TCAM hit-rates on Stanford
Backbone, given the same TCAM capacity. Since the packet
trace has no timestamp, we assume the packets are injected
in constant speed. In this case the achieved TCAM hit-rate is
much lower than that on CAIDA, due to the lack of spatial
locality in the synthetic trace. Despite this, IR is still 20%
better than CS and DS.

Fig. 8(c) shows the achieved TCAM hit-rates on the multi-
field rule table ACL, given the same TCAM capacity. Although
the difference is not significant, IR is still better than DS and
CS.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 22,2023 at 12:38:07 UTC from IEEE Xplore. Restrictions apply.

42

23 DS

Ccs IR 222 DS =S cs zz2 IR

=
o
o

R ps I Ccs zz2 IR 8 ps T Cs zz2 IR

o

o

Cache-hit Ratio (%)
w
o
Cache-hit Ratio (%)
N5 g

o

(a) CAIDA

(b) Stanford

Fig. 8.
—— ACL FW

50 PR
25 -
o] 4

2 3 4 5)
of Top Flows (K))

Probability(%)

e o v =N
o » o U o
gy

of Cached Rules (K)

Fig. 9. Cost of caching hot flows. Fig. 10. The distribution of § on

popular rules.

tza DS B S 3 R B ps XN s 22 IR

Time (ms)

3
TCAM Capacity (K)

TCAM Capacity (K)

(a) CAIDA (b) FW

Fig. 11. Comparison of time consumption to achieve a high TCAM hit-rate.

Fig. 8(d) shows the achieved TCAM hit-rates on FW,
given the same TCAM capacity. IR demonstrates much better
performance than DS and CS in this case, because FW’s
rule table is 2.5x larger than ACL’s and with more severe
dependency among rules. We also notice that CS performs
much better than DS in rule set FW, but not in rule set ACL.
We use a parameter 0, = 7 to help reveal the reason, where 7
denotes a specific rule, a denotes the size of r’s cover-set and b
denotes the size of r’s dependent-set. We select the top-hitted
5K rules from both ACL and FW and plot the distribution of
6 on the selected rules in Fig. 10. From the figure, we can see
that about 60% of the selected rules in FW (and 10% in ACL)
have their § less than 1.0. These rules require more caching
overhead in DS than in CS. For rules with =1, their caching
overhead in DS and CS are the same. Since more rules in FW
have § <1, CS is able to demonstrate better performance than
DS as CS incurs relatively less overhead for such rules.

Time Consumption for Cache Filling. When the cache is
empty, all new flow arrivals will trigger cache misses. It takes
time for the cache to be filled by selected rules (by schemes
such as IR) to reach a certain hit rate.

We conduct the experiments and Fig. 11(a) shows that IR
takes much less time than DS and CS to fill the cache to reach
a certain hit rate under CAIDA.

Comparison of TCAM cache hit-rate

Cache-hit Ratio (%)
Cache-hit Ratio (%)

TCAM Capacity (K) TCAM Capacity (K)

(c) ACL (d) FW

on IP prefix tables and 5-tuple rule tables.

Actually, reaching the highest TCAM hit-rate for CS and DS
is proved to be NP-hard so they adopt the following heuristic
search algorithm. For a rule » matching n packets, a value v is
defined as the ratio of 7 and 2 by DS and CS, respectively. DS
and CS calculate v for each rule and greedily select the rules
with larger v first to fill the TCAM. The major time complexity
of DS and CS lies in the calculation of v and sorting them for
all rules, which is represented by the unshaded portion of the
bar. The selection of rules takes less time which is represented
by the shaded portion of the bar.

In contrast, IR only needs to generate an isolate-rule for
each flow and requires much less computation time than DS
and CS. In our experiments, Algorithm 1 takes only a few
microseconds to generate an isolate-rule under CAIDA.

Fig. 11(b) shows a similar comparison under FW. Although
the size of FW is much smaller than that of CAIDA, the
time consumption of DS increases significantly under FW,
because the rule set contains more complicated dependency
among rules. Meantime, we can see that IR consumes more
time on FW to generate an isolate-rule. This is because the
time complexity of Algorithm 1 is proportional to the number
of rule match fields. Although the time for Algorithm 1 to
generate m isolate-rules is larger than the time for CS to find
m specific rules, T-cache does not generate m rules at a stroke,
but generates each rule in time according to traffic changes.

TCAM Cache Replacement. In normal working condition,
DS and CS update TCAM incrementally. Assume the rules to
be inserted into and evicted from TCAM have been identified
by comparing m newly selected rules and m existing rules in
TCAM. 1t is not easy to conduct the cache replacement due
to the constraint of rule dependency. A rule in TCAM can be
evicted only after all its dependent rules are evicted, and a rule
can be inserted into TCAM only after all rules depending on it
are inserted. Both incur long computation time and many rule
moves, which make DS and CS hardly practical. Therefore,
we do not evaluate DS and CS’s TCAM cache replacement
performance but show IR’s cache replacement performance in
the system level of T-cache. Since IR is dependency-free, it
can directly insert a newly generated isolate-rule into TCAM
without moving any existing rule.

Finding Cold Rules in TCAM. DS and CS periodically
poll TCAM counters to measure the heat of rules in TCAM.
They then use the greedy algorithm mentioned above to find
the rules to be cached in TCAM. A rule in TCAM is consid-

Authorized licensed use limited to: Tsinghua University. Downloaded on December 22,2023 at 12:38:07 UTC from IEEE Xplore. Restrictions apply.

43

-+ m=1K,p=6 -%- m=IK,p=5 -+- m=2K,p=4 e

100 7 = 100

s e

90 £ o 75

801 '/‘ 50

/ A
70 LA 25

Accuracy (%)
Accuracy (%)

60

0 20 [8

5 10 15 2 4 6
Ratio of Coldest Rules (%) # of Entry per Bucket

(a) Accuracy of finding cold rules (b) Accuracy of finding hot flows

Fig. 12. Performance of T-cache in finding cold rules and hot flows.

ered cold if it will not be matched in the next period. On the
one hand, periodically polling all TCAM counters consumes a
lot of bandwidth. On the other hand, the excessive computation
time will result in a relatively long update cycle (500 seconds
in CacheFlow), which can stale the cache.

In contrast, IR uses a small hardware-based hash table to
constantly track cold rules, so a newly generated rule can be
inserted into TCAM instantly, keeping the cache fresh. Since
the hash table is consulted only once per each rule insertion,
the bandwidth consumption between the slow path and the fast
path is negligible.

We explore how the hash table size influences the accuracy
of the cold rules identified. We conduct the experiment as
follows. We search the TCAM using one-minute worth of
packets from the CAIDA trace without updating the TCAM.

We then calculate the number of cold rules recorded in the
hash table with a size of 2P. We use 7. = 2% to reflect the
accuracy, where k indicates the number of identified rules by
T-cache that are actually among the top ¢ coldest rules. We
run the experiment for the 60-minute trace and the average
result is shown in Fig. 12(a).

As shown in the figure, 55% and 63% of the 2P identified
cold rules are among the top c=2P coldest rules for p=5 and
p=6 when m=1K (i.e., top 3.2% and top 6.4%), respectively.
If we relax the requirement to test whether the identified cold
rules are among the top 10% and top 20% coldest ones for p=5
and p=6, respectively, the accuracy becomes 100%. Meantime,
we can see that the 2% cold rules identified by the T-cache are
among the top 3.5% coldest rules when m=2K. It is worth
noting that such good accuracy is achieved with only % of
the original TCAM counters.

Finding Hot Flows in Slow Path. T-cache uses a software
hash table in CPU to identify those newly emerged hot flows
in real time. Since most of the traffic is forwarded through
TCAM and only a small amount of traffic reaches the slow
path, and the time complexity of hashing operation is O(1),
the speed for hot flow identification is not a problem. However,
the way we deal with the hash collision may lead to the miss
of some real hot flows. To measure the accuracy of hot flow
detection, we conduct experiments as follows.

In a time window ¢, T-cache reports a flow as a large one
if more than s packets belong to it. We calculate how many
actual hot flows are detected by T-cache and the results are
shown in Fig. 12(b), where ¢ is 60 seconds and s is 1K.
Fig. 12(b) shows that, when the number of entries ¢ per
hash bucket is 4, 75%, 98% and 99% hot flows are correctly

—e-- m=0.5K - m=1K -+ m=2K
5 100 s

) e T

S N X W et '.*‘\w»{;‘ ,:"‘"\.’\\ ,'“'f‘.("«"
B 80 Y EE.

o

e

<

< 60

<

®

O 40

10 20 30 40 50 60
Time (minute)

Fig. 13. TCAM hit-rate of T-cache in a dynamic environment.

- --*-- m=0.5K -=-- m=1K --+-- m=2K
c
o
O
Q
n 10!
@
Xy
o * * . *
L gl
g 10°4 .
i H\ + ,7\”:' \ 4 4 A A
o G TN Y YA ‘/uv*&ft“ ,’ﬂ‘*’
3 107 = L
) 10 20 30 40 50 60

Time (minute)

Fig. 14. TCAM update frequency of T-cache in a dynamic environment.

identified when the size of the hash table is 1K, 5K and 10K,
respectively. Meantime, by comparing the accuracy in the case
of m=5K, g=4 and m=10K, ¢=2 in Fig. 12(b), we can see that
given the same storage space, more entries in one bucket will
help to improve the accuracy. Besides, considering that a larger
m requires more processing time and more storage but with
limited improvement on performance, we set m and ¢ to 5K
and 4, respectively.

Overall Performance of T-cache. In order to compare IR
with DS and CS, the above experiments are carried out under
a relatively static situation. Now we run the complete T-cache
system in a dynamic environment and the results are shown in
Fig. 13 and 14. For a high-speed backbone router with 760K
rules, T-cache needs a small TCAM with 500 entries to achieve
a TCAM hit-rate of about 93%. Meantime, maintaining such a
high hit-rate only requires 3.5 rule insertions per second. We
also find that smaller TCAM corresponds to higher update
frequency. This is because the competition among hot flows
will be more intensive in small TCAM, which will lead to
frequent caching and eviction of rules in a dynamic traffic
environment. Since T-cache adopts IR to achieve dependency-
free rule insertion, each insertion only requires a single TCAM
write operation and the extra computation required by other
schemes such as CacheFlow is avoided.

VII. CONCLUSION

T-cache takes advantage of the traffic temporal and spatial
localities to meet the challenges of network traffic throughput
and rule table scalability. T-cache avoids the troublesome
TCAM update issue by crafting dependency-free rules to
cache. The evaluations show T-cache outperforms the existing
rule caching schemes. In future work we seek to deploy and
test T-cache in real networks for better system tuning.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 22,2023 at 12:38:07 UTC from IEEE Xplore. Restrictions apply.

44

[1]

[2

—

[3

=

[5

=

[6

=

[7]

[8

=

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

Martin Casado, Michael J Freedman, Justin Pettit, Jianying Luo, Nick
McKeown, and Scott Shenker. Ethane: Taking control of the enterprise.
ACM SIGCOMM CCR, 37(4):1-12, 2007.

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
OpenFlow: Enabling innovation in campus networks. ACM SIGCOMM
CCR, 38(2):69-74, 2008.

Ravi S Sandhu and Pierangela Samarati. Access control: Principle and
practice. IEEE communications magazine, 32(9):40-48, 1994.

Paul Quinn and Tom Nadeau. Problem statement for service function
chaining. Technical report, 2015.

Clarence Filsfils, Stefano Previdi, Les Ginsberg, Bruno Decraene,
Stephane Litkowski, and Rob Shakir. Segment routing architecture.
Technical report, 2018.

Jose Ordonez-Lucena, Pablo Ameigeiras, Diego Lopez, Juan J Ramos-
Munoz, Javier Lorca, and Jesus Folgueira. Network slicing for 5G with
SDN/NFV: Concepts, architectures, and challenges. IEEE Communica-
tions Magazine, 55(5):80-87, 2017.

Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait
Dixit, and Lawrence J Wobker. In-band network telemetry via pro-
grammable dataplanes. In ACM SIGCOMM, 2015.

M Mitchell Waldrop. The chips are down for Moores law. Nature News,
530(7589):144, 2016.

Qunfeng Dong, Suman Banerjee, Jia Wang, and Dheeraj Agrawal. Wire
speed packet classification without tcams: a few more registers (and a
bit of logic) are enough. In ACM SIGMETRICS Performance Evaluation
Review, volume 35, pages 253-264. ACM, 2007.

Xiaogiao Meng, Vasileios Pappas, and Li Zhang. Improving the
scalability of data center networks with traffic-aware virtual machine
placement. In INFOCOM, 2010.

Nadi Sarrar, Steve Uhlig, Anja Feldmann, Rob Sherwood, and Xin
Huang. Leveraging Zipf’s law for traffic offloading. ACM SIGCOMM
Computer Communication Review, 42(1):16-22, 2012.

The CAIDA UCSD Anonymized Internet Traces[20180315]. www.
caida.org/data/passive/passive_dataset.xml. Accessed in Mar, 2018.
Hengbo Wang, Wei Ding, and Zhen Xia. A cloud-pattern based network
traffic analysis platform for passive measurement. In 2012 International
Conference on Cloud and Service Computing, pages 1-7. IEEE, 2012.
Wei mao et al. Facilitating Network Functions Virtualization by
Exploring Locality in Network Traffic: A Proposal. In Proceedings
of the 2018 2nd International Conference on Computer Science and
Artificial Intelligence, pages 495-499. ACM, 2018.

Bo Yan, Yang Xu, Hongya Xing, Kang Xi, and H Jonathan Chao. Cab:
A reactive wildcard rule caching system for software-defined networks.
In Proceedings of the third workshop on Hot topics in software defined
networking, pages 163-168. ACM, 2014.

Jorg Wallerich and Anja Feldmann. Capturing the variability of internet
flows across time. In INFOCOM, 2006.

K Papagiannakit, Nina Taft, and Christophe Diot. Impact of flow
dynamics on traffic engineering design principles. In INFOCOM, 2004.
Jorg Wallerich, Holger Dreger, Anja Feldmann, Balachander Krishna-
murthy, and Walter Willinger. A methodology for studying persistency
aspects of internet flows. ACM SIGCOMM CCR, 35(2):23-36, 2005.
Dong Lin et al. Route Table Partitioning and Load Balancing for Parallel
Searching with TCAMs. In IPDPS, 2007.

Naga Katta, Omid Alipourfard, Jennifer Rexford, and David Walker.
Cacheflow: Dependency-aware rule-caching for software-defined net-
works. In Proceedings of the Symposium on SDN Research, page 6.
ACM, 2016.

David E Taylor and Jonathan S Turner. Classbench: A packet classifi-
cation benchmark. /IEEE/ACM TON, 15(3):499-511, 2007.

Peng He, Wenyuan Zhang, Hongtao Guan, Kavé Salamatian, and
Gaogang Xie. Partial order theory for fast tcam updates. IEEE/ACM
Transactions on Networking (TON), 26(1):217-230, 2018.

Xitao Wen et al. RuleTris: Minimizing rule update latency for TCAM-
based SDN switches. In ICDCS, 2016.

Kun Qiu et al. Fast lookup is not enough: Towards efficient and scalable
flow entry updates for TCAM-based OpenFlow switches. In ICDCS,
2018.

VC Ravikumar, Rabi N Mahapatra, and Laxmi Narayan Bhuyan. Ease-
CAM: An energy and storage efficient TCAM-based router architecture
for IP lookup. IEEE Transactions on Computers, 2005.

[26]
[27]
[28]
[29]
(30]
[31]
[32]

(33]

[34]

(35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]
[53]
[54]

[55]

VC Ravikumar and Rabi N Mahapatra. TCAM architecture for IP lookup
using prefix properties. IEEE Micro, 2004.

Chuwen Zhang et al. OBMA: Minimizing Bitmap Data Structure with
Fast and Uninterrupted Update Processing. In IWQoS. IEEE, 2018.

Ed Spitznagel, David E Taylor, and Jonathan S Turner. Packet classifi-
cation using extended TCAMs. In ICNP, 2003.

Kirill Kogan er al. Exploiting order independence for scalable and
expressive packet classification. In TON, 24(2):1251-1264, 2015.
Vitalii Demianiuk ef al. New alternatives to optimize policy classifiers.
In ICNP, pages 121-131. IEEE, 2018.

David E. Taylor. Survey Taxonomy of Packet Classification Techniques.
Acm Computing Surveys, 37(3):238-275, 2005.

Qunfeng Dong et al. Packet classifiers in ternary CAMs can be smaller.
In ACM SIGMETRICS Performance Evaluation Review. ACM, 2006.
Kalapriya Kannan and Subhasis Banerjee. Compact TCAM: Flow entry
compaction in TCAM for power aware SDN. In International conference
on distributed computing and networking. Springer, 2013.

Huan Liu. Routing table compaction in ternary CAM. I[EEE Micro,
22(1):58-64, 2002.

Karthik Lakshminarayanan et al.
classification with ternary CAMs.
2005.

Huan Liu. Efficient Mapping of Range Classifier into Ternary-CAM. In
Hot Interconnects, volume 10, pages 95-100, 2002.

Jan Van Lunteren and Ton Engbersen. Fast and scalable packet
classification. IEEE Journal on Selected Areas in Communications,
21(4):560-571, 2003.

Jun Xu, Mukesh Singhal, and Joanne Degroat. A novel cache architec-
ture to support layer-four packet classification at memory access speeds.
In INFOCOM, 2000.

Francis Chang, Wu-chang Feng, and Kang Li. Approximate caches for
packet classification. In INFOCOM, 2004.

Jang-Ping Sheu and Yen-Cheng Chuo. Wildcard rules caching and
cache replacement algorithms in software-defined networking. [EEE
Transactions on Network and Service Management, 13(1):19-29, 2016.
Zixuan Ding, Xinxin Fan, Jinping Yu, and Jingping Bi. Update Cost-
Aware Cache Replacement for Wildcard Rules in Software-Defined
Networking. In ISCC, 2018.

Minlan Yu, Jennifer Rexford, Michael J Freedman, and Jia Wang.
Scalable flow-based networking with DIFANE. ACM SIGCOMM, 2010.
Xin Jin, Honggiang Harry Liu, Rohan Gandhi, Srikanth Kandula,
Ratul Mahajan, Ming Zhang, Jennifer Rexford, and Roger Wattenhofer.
Dynamic scheduling of network updates. In ACM SIGCOMM, 2014.
Zhijun Wang, Hao Che, Mohan Kumar, and Sajal K Das. CoPTUA:
Consistent policy table update algorithm for TCAM without locking.
IEEE Transactions on Computers, 53(12):1602-1614, 2004.

Haoyu Song and Jonathan Turner. Nxg05-2: Fast filter updates for packet
classification using tcam. In GLOBECOM, 2006.

Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and
David Walker. Composing software defined networks. In NSDI, pages
1-13, 2013.

Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin,
Dexter Kozen, Cole Schlesinger, and David Walker. NetKAT: Semantic
foundations for networks. Acm sigplan notices, 49(1):113-126, 2014.
Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker.
A compiler and run-time system for network programming languages.
ACM SIGPLAN Notices, 47(1):217-230, 2012.

Nate Foster et al. Frenetic: A network programming language. ACM
SIGPLAN Notices, 46(9):279-291, 2011.

Devavrat Shah and Pankaj Gupta. Fast incremental updates on Ternary-
CAMs for routing lookups and packet classification. In Proceedings of
Hot Interconnects, 2000.

Marek Cygan, Lukasz Kowalik, and Mateusz Wykurz. Exponential-time
approximation of weighted set cover. Information Processing Letters,
109(16):957-961, 2009.

SIMD. http://en.wikipedia.org/wiki/SIMD.

Pankaj Gupta and Nick McKeown. Classifying packets with hierarchical
intelligent cuttings. leee Micro, 20(1):34—41, 2000.

Stanford backbone router forwarding configuration. http://tinyurl.com/
08glh5n.

Jiff Matousek et al. Classbench-ng: Recasting classbench after a decade
of network evolution. In 2017 ACM/IEEE ANCS, pages 204-216. IEEE,
2017.

Algorithms for advanced packet
In ACM SIGCOMM CCR. ACM,

Authorized licensed use limited to: Tsinghua University. Downloaded on December 22,2023 at 12:38:07 UTC from IEEE Xplore. Restrictions apply.

45

