T-cache: Dependency-free Ternary Rule
Cache for Policy-based Forwarding

Ying Wan!, Haoyu Song?, Yang Xu3, Yilun Wang!, Tian Pan?, Chuwen
Zhang! and Bin Liu!

ITsinghua University, China, 2Futurewei Technologies, USA
3Fudan University, Beijing University of Posts and

Telecommunications, China
Email: wany16@mails.Tsinghua.edu.c

Tsinghua University

Outline

* Background

 Rule-isolation

T-cache architecture

Evaluation

e Conclusion

Policy in different scenarios

= FIB in Routing (prefix)
Priority DIP -

24 192.168.1.0/24 127.0.0.1
32 192.168.1.1/32 10.0.0.1

= Packet classification (rule)

Priority |SIP|DIP| SP | DP | P H

= Flow table in SDN (policy)
Priority Match Fields -
FSwitchr MAC = MAC Eth = VLAN IP IP | TCP | TCP -
port | src | dst ‘type { ID | sre | dst | psrc pdst

Challenges in policy-based forwarding

* Lookup speed
* Ever-increasing network throughput
* Rule table scale blast
* Policy dependency

* Uncoordinated Sleeping

Why Zero-Time Waketp Matters?

* Ifro We presume links can be
 Unc waken up in zero-time!
Hardware can finally support us!
We are working on high-level abstractjons!

ow!
We leave this to hardware guys!

)

LN
——0 Paw_~ 0SS
T~ +Commned
- ‘., e
QY=

power saving!
idle period (can potentially be very long)

Measurement with Real Devices

 Huawei NE4OE-X8 (under minimum configuration)
 Time to market: 2010

* Line Card * 2 (each can handle 20Gbps)
 Route Processor Card * 2

* Fans (speed set to 60%), Switch Fabric Card,
Power Supply and Backplane

|
BshE& ,
e&jﬁg L

| %
L 1OGbpS _lw~—'~-“h_.

NE40E-X8igmse /= R

. FF4EBGPESHERIN Yokogawa#===, 5 &
(THFENE)

Line Card Wakeup Process

. Wakeup events interpreted from boot log

/- .
Software (VxWorks OS) preparation 0-12 Line card powered on
on host processor (60s) \ 12-24 Bootrom used sdram tested
Switch Fabric Card 24-42 Software downloaded from route
i Route Processor Card processor
ultiple
LineCE?rds Route Pessor || Memory = 42-60 Vxworks OS initialized in host processor
NFRY)51 Line Card -y
Traffie e eine c ﬁ{? 60-67 Hardware detected on line card
_— <::LPHY/MAC iine Card % 67-84 Traffic manager used sram tested
Framer : P T8
_ PRVIVIAC [84-106 Network processor used buffer and bus
Trafﬂc@ Framer Slei:.c.h bm tested
A B abric
- nterfacel| | 106-116 On-board ddr3 dram and tcam tested
Traffic Bt NG - ! ::gh
<j‘1 Framer | gy . (LEaficManager 116-120 Switch fabric interface initialized
Connector
Memory diagnosis and hardware ~ 120-135 Software tasks on data plane created
configuration on data plane (75s) 135-202 Routing table downloaded (200K routes)

Routing table download into TCAM (157s)

Other Interesting Measurement Results

* Line Card Wakeup Time vs Routing Table Size

500
450

Line Card Recovery Time (s)

0

400 |
350
300
250 |
200 |
150
100
50 |

dominates

Pow

er-Law Behavi

Number of Routes in Routing Table (K)

200
180

160
140
120
100 |
80
60
40

Active Prefix Number (K}

T

2.5

)
2

Hit Times =1 —=—]
Hit Times = 01K —»— 1 1.5

Hit Times =z 1K —a—|
Hit Times = 10K —=— |

Hit Times (10%)

20

20 30 40 50

Time (min)

&0

0 200 400 600 800 1000
Prefixes Ranked by Hit Times

Routing table download

line card wakeup process

o 50 100 200 (500)<——2014 BGP Table Size (CIDR Report)

or in Route Lookup

Prefixes with hit times

| more than 100K only
occupy 0.6% of the

total prefixes, but
dominate 85.2% of the
traffic (power-law)

Other Interesting Measurement Results (cont)

 Power Consumption Under Varying Traffic Loads

= 675 | 1 Power changes little under
§’ 670 |] varying traffic loads =>

S g5 | | Insensitive to the traffic

§ gl | load change to take power
£ es saving actions adaptively

O 2 4 6 8 10
Varying Traffic Load (Gbps)

e Power Breakdown of Router and Line Card
119

204 _ Dominant
Dominant
M Line Card / ASICe/NPs
] I
Route Card PR sjupp !
209 _ . B memories
__ m Switch Fabric m CPU/DRAM
B Others M interconnect
M others

Router Power Breakdown (NE40E-X8) Line Card Power Breakdown (Cisco Report)

Design Principles

Keep Host Processor Standby
* It costs 60s wakeup time with only 9% power consumption
Skip Memory Diagnosis

* Memory diagnosis is very time-consuming, but should be a
feature only when router is cold started

Recover Data Plane Tasks Incrementally

* Packet can be allowed in, once a minimized but essential
tasks are done, even though there may be some initialization
still going on (e.g., QoS in Traffic Manager)

Download Popular Routes First, Then Let Traffic in
* Route download dominates wakeup time (the bottleneck)

* A slim slot of popular prefixes will cover majority of traffic

The Problem (LPM Violation)

* A straightforward strategy: Download by Popularity

* But this will violate “Longest Prefix Match”

Routing Table:

ID Prefix Popularity

a 0* 20
b 000* 80
c 01* 30
d 1* 100
e 100* 10
f 11* 60
g 111* 40

i1 Download by Popularity: d, b, f, g, ¢, a, e

Binary Prefix Trie

Reason: prefix g is more
specific than prefix d, but
prefix g has less popularity.

Control Plane

Packet

isforwarding!

Data Plane

——>
111...

will match dx

b fl gl CI al
mi
\ 2
—— d
111...
Control Plane finish

downloading

A4

'dr bl fr 8 ¢Cae

should match g

Problem Formalization

a Prefix download sequence: p,, Py, Py -+ Pp.q

 Given traffic will be allowed in after the download

of the first m prefixes, we define cumulative

popularity C(m) as 2:261 p..pop

 We expect C(m) can be as large as possible for a
minimized routing table miss rate, under the
constraint of longest prefix match, thus the optimal
prefix download sequence must satisfy

maximum (C(m))

s.t. i <}j, if p; is a more specific prefix of p;, Vi, Vj

Heuristic Approach

Basic Idea: sort prefixes by popularity first, adjust
prefix sequence when LPM violation is detected

When traversing the prefix trie, for each visited
prefix v, we define v.sub_min as the prefix of the
minimal popularity in the subtrie rooted at prefix v.

LPM violation condition: v.sub_min.pop < v.pop

If we detect LPM violation, we can move v behind
v.sub_min to eliminate the violation

We do the “check-and-adjust” procedure for each
node in the routing prefix trie, v.sub_min can be
precalculated

Heuristic Approach (cont)

1 Function 1pm_adjust (TrieNode v)

2 if v == null then

3 | return;

AT v' O(nlgn)

/* get the least popular prefix in subtrie x/ v Suboptimal
5 v.sub_min <— get_sub_min(v);

if is_prefix(v) && v.pop > v.sub_min.pop then v Effective on real trace
/* move v behind v.sub_min * /
7 move_behind(v, v.sub_min);
8 end
9 lpm_adjust(v.l);
10 lpm_adjust(v.r);
11 end

LPM Violated Preorder Traversal:
Ranking Visited Sub_Min
p d \d bfgcael a(20) a(20)

dbfgcae b(80) b(80)

, |dbfgcae c(30) c(30)
\|bfgcaed d(100) e(10)
b fhg caed e(10) e(10)
Ibgfcaed f(60) g(40)
Jlbgfcaed g(40) g(40)
i R ~LPM Guaranteed

Optimal Approach by Dynamic Programming

Binary Pretix Trie

Assuming v.l and v.r have been
already solved as c(v.l) and
c(v.r), construct v’s solution c(v)
based on v.I’s and v.r’s solutions

c(v) = recursion(c(v.l), c(v.r))

We need to build the recursive
relations

Recursive Relations

* For each prefix, we define v.c[i] as the cumulative popularity
of the first i prefixes in the optimal prefix download
sequence

* Hence, maximizing C(m) with LPM guaranteed is equal to
solving root.c[m]

* Assuming v.l, v.r have already been solved, i.e., v.l.c[i] and
v.r.c[i] have been calculated, we can derive v.c[i] according
to the following recursive formulas

* If vis notincluded in the first i prefixes, we will have
v.c[i] = max(v.l.c[i], ..., v.l.c[i-j] + v.r.c[j], ..., v.r.c[i]) O <j<i
* Ifvisincluded in the first i prefixes, we will have

v.c[i] = sub_sum(v) // calculate the popularity summation of
prefixes in the subtrie rooted at v

* Here, we leave out other boundary conditions for brevity

Solution Space Tree (SST)

* With memoization, we can generate the solution space tree
(SST), from which we can construct the optimal solution

v'O(n3)
v'Optimal
v'Constructing solution from SST

a.c[3]+d.c[2 a.c[2]+d.c[3 ° ;918]0+d.c|4|
130 210
40 \ \

i3.c[1]+f.c[1] i3. [0]+f c[2] i2.c[1]+c. c[l] i3.c[1]+f.c[2] i2.c[1]+c. c[O] i2. c[0]+c c[l]
10 ¢ 100 80 10 100 80
o

g.c[1]
The optimal value of il.c[5] is 290

The optimal solution can be constructed
from SST as {{{b}, 0}, {d, e, f, g}}

Batch Download of Routing Table

Traditional route download:
(1) Routes downloaded from route processor to host processor

(2) Host processor translates logic representation of routes into
hardware-friendly instructions

(3) Hardware executes the translated instructions

Fast route download (given host processor is standby):

(3) Hardware executes the translated instructions in batch

Reduce Lookup/Update Conflict by Caching

l Updates in batch

Wire-speed lookups
' AM
-cacﬂ A Memory
NP ™~ pandwidth

Lhit contention!

The cache can be de-allocated to on-chip memory
pool when batch prefix update is completed

Evaluation of Prioritized Prefix Download

A routing table with 340584 routes, 60-minute traffic from 20Gbps gateway link

96.8% ---- - [gt s . —
09 i = .
2 08 gF~
T 07% !
= : | Popularity —=—
T 06 ! Heuristic -—©—
054 | Optimal —a—
0.4} |

0.3 1 1 1 1 1 1
O { 50000 100000 150000 200000 250000 300000 350000

15000 Number of Prefixes Downloaded Before Traffic in

(4.4%)

 Optimal’s result is extremely close to Popularity’s
e Heuristic works well with O(nlgn) complexity
* With Optimal, first 4.4% prefixes will cover 96.8% traffic

Wake up a Bare-Metal Router Prototype

PHY+MAC+

TCAM Chip L3 Forwarding

Switch Fabric Interface CYNSE70256

VSC872

Network Processor
& Traffic Manager

Altera EP1S80F1508C5 FPGA
Host Processor

MPC8245

Events Time (ms)
+—software package-downloadedvianetwork——1 0.3% of the
—VxWorks-beooted—up 5 - .
. ted-up . 5060 original time!
—routnetable-downloadedanetwerk 47182
prefix—parsing;trie-construction 275306
prefix updated into TCAM 2545.3 X 0.05=127.27ms

Conclusion

Systematic measurement subverts the presumption
of zero-time link wakeup

New designs to reduce the line card wakeup time
Algorithms to tackle the LPM violation issue
Engineering efforts to make the speedup

Radical reduction (to 0.3%) of wakeup time on a
bare-metal prototype built for design verification

Promising to build better power-efficient Internet

Thank You!

Q&A

