

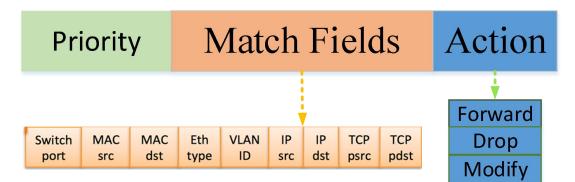
T-cache: Dependency-free Ternary Rule Cache for Policy-based Forwarding

Ying Wan¹, Haoyu Song², Yang Xu³, Yilun Wang¹, Tian Pan⁴, Chuwen Zhang¹ and Bin Liu¹
¹Tsinghua University, China, ²Futurewei Technologies, USA ³Fudan University, Beijing University of Posts and Telecommunications, China Email: wany16@mails.Tsinghua.edu.cn

Outline

- Background
- Rule-isolation
- T-cache architecture
- Evaluation
- Conclusion

Policy in different scenarios


FIB in Routing (prefix)

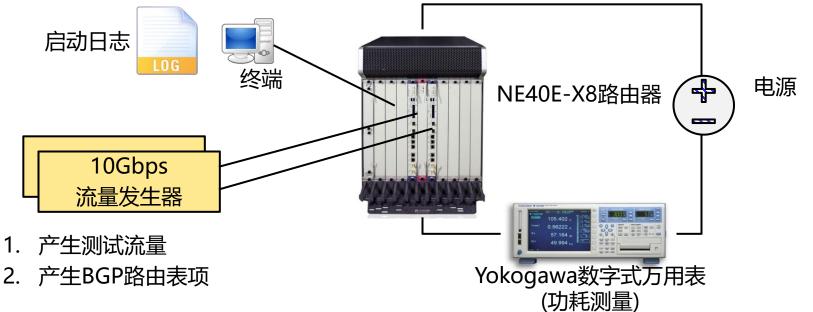
Priority	DIP	Next hop
24	192.168.1.0/24	127.0.0.1
32	192.168.1.1/32	10.0.0.1

Packet classification (rule)

Priority	SIP	DIP	SP	DP	Р	Action

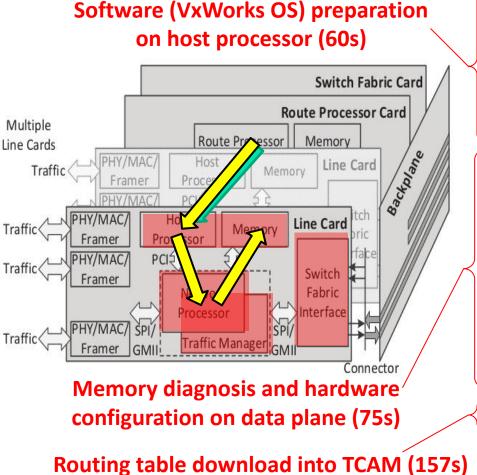
Flow table in SDN (policy)

Challenges in policy-based forwarding


- Lookup speed
 - Ever-increasing network throughput
 - Rule table scale blast
 - Policy dependency
- Uncoordinated Sleeping

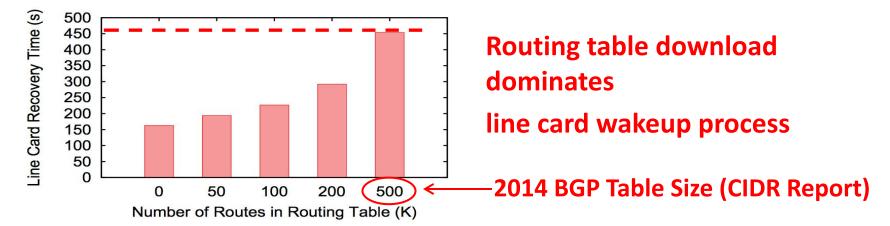
Why Zero-Time Wakeup Matters?

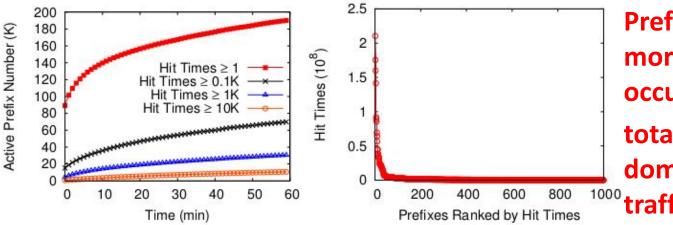
If rou We presume links can be Unc waken up in zero-time! Hardware can finally support us! We are working on high-level abstractions! ow! We leave this to hardware guys! DSS rained + Coa power saving! idle period (can potentially be very long)


Measurement with Real Devices

- Huawei NE40E-X8 (under minimum configuration)
 - Time to market: 2010
 - Line Card * 2 (each can handle 20Gbps)
 - Route Processor Card * 2
 - Fans (speed set to 60%), Switch Fabric Card, Power Supply and Backplane

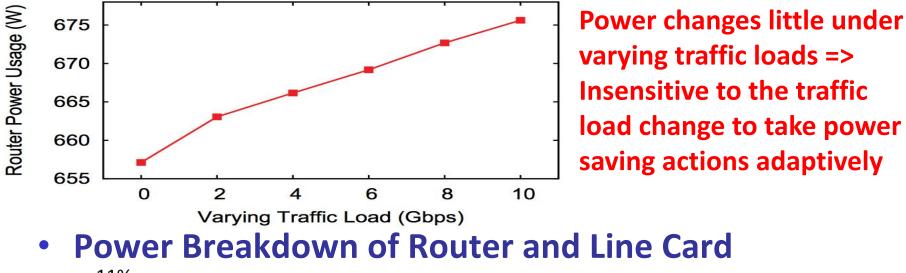
Line Card Wakeup Process

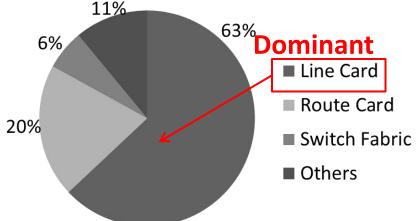

Wakeup events interpreted from boot log


TimeEvent0-12Line card powered on12-24Bootrom used sdram tested24-42Software downloaded from route processor42-60Vxworks OS initialized in host processor60-67Hardware detected on line card67-84Traffic manager used sram tested84-106Network processor used buffer and bus tested106-116On-board ddr3 dram and tcam tested116-120Switch fabric interface initialized		
12-24Bootrom used sdram tested24-42Software downloaded from route processor42-60Vxworks OS initialized in host processor60-67Hardware detected on line card67-84Traffic manager used sram tested84-106Network processor used buffer and bus tested106-116On-board ddr3 dram and tcam tested	Time	Event
24-42Software downloaded from route processor42-60Vxworks OS initialized in host processor60-67Hardware detected on line card67-84Traffic manager used sram tested84-106Network processor used buffer and bus tested106-116On-board ddr3 dram and tcam tested	0-12	Line card powered on
42-60Vxworks OS initialized in host processor60-67Hardware detected on line card67-84Traffic manager used sram tested84-106Network processor used buffer and bus tested106-116On-board ddr3 dram and tcam tested	12-24	Bootrom used sdram tested
60-67Hardware detected on line card67-84Traffic manager used sram tested84-106Network processor used buffer and bus tested106-116On-board ddr3 dram and tcam tested	24-42	
67-84Traffic manager used sram tested84-106Network processor used buffer and bus tested106-116On-board ddr3 dram and tcam tested	42-60	Vxworks OS initialized in host processor
84-106Network processor used buffer and bus tested106-116On-board ddr3 dram and tcam tested	60-67	Hardware detected on line card
tested106-116On-board ddr3 dram and tcam tested	67-84	Traffic manager used sram tested
	84-106	•
116-120 Switch fabric interface initialized	106-116	On-board ddr3 dram and tcam tested
	116-120	Switch fabric interface initialized
120-135 Software tasks on data plane created	120-135	Software tasks on data plane created
135-292 Routing table downloaded (200K routes)	135-292	Routing table downloaded (200K routes)

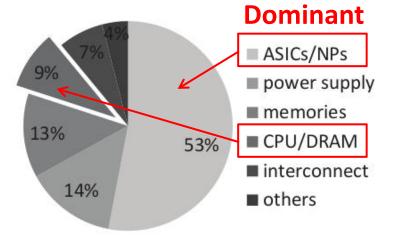
Other Interesting Measurement Results

• Line Card Wakeup Time vs Routing Table Size

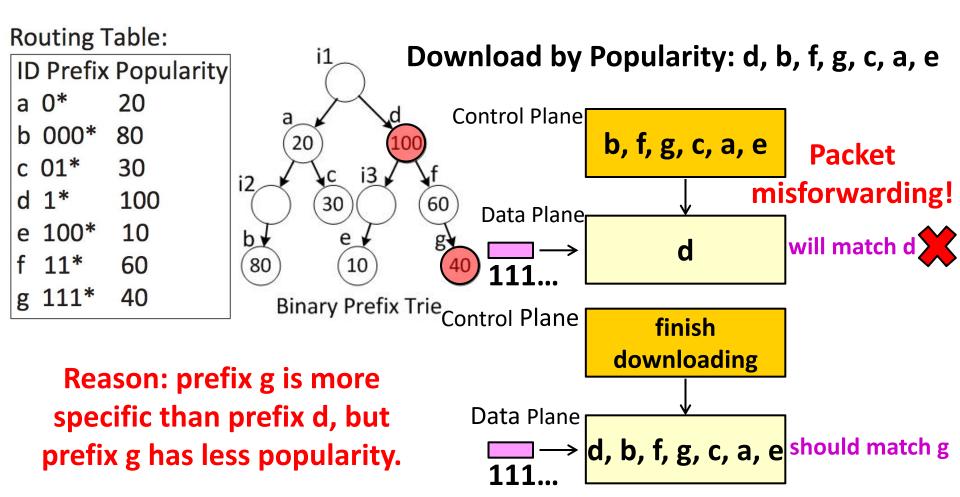

Power-Law Behavior in Route Lookup



Prefixes with hit times more than 100K only occupy 0.6% of the total prefixes, but dominate 85.2% of the traffic (power-law)


Other Interesting Measurement Results (cont)

Router Power Breakdown (NE40E-X8)


Line Card Power Breakdown (Cisco Report)

Design Principles

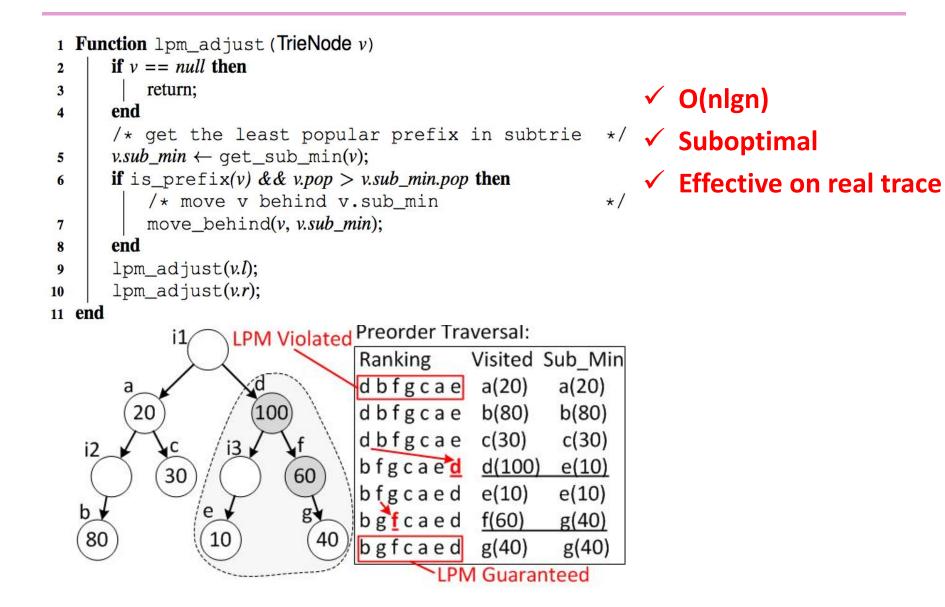
- Keep Host Processor Standby
 - It costs 60s wakeup time with only 9% power consumption
- Skip Memory Diagnosis
 - Memory diagnosis is very time-consuming, but should be a feature only when router is cold started
- Recover Data Plane Tasks Incrementally
 - Packet can be allowed in, once a minimized but essential tasks are done, even though there may be some initialization still going on (e.g., QoS in Traffic Manager)
- Download Popular Routes First, Then Let Traffic in
 - Route download dominates wakeup time (the bottleneck)
 - A slim slot of popular prefixes will cover majority of traffic

The Problem (LPM Violation)

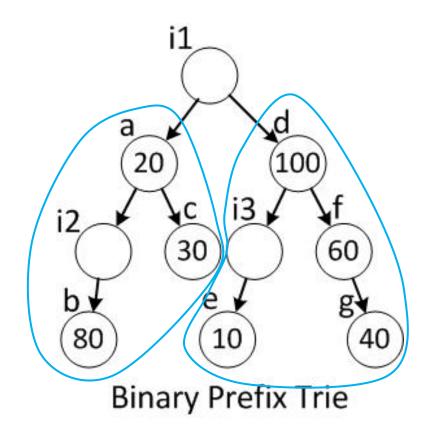
- A straightforward strategy: Download by Popularity
- But this will violate "Longest Prefix Match"

Problem Formalization

- Prefix download sequence: p₀, p₁, p₂, ..., p_{n-1}
- Given traffic will be allowed in after the download of the first m prefixes, we define cumulative popularity C(m) as $\sum_{i=0}^{m-1} p_i$.pop
- We expect C(m) can be as large as possible for a minimized routing table miss rate, under the constraint of longest prefix match, thus the optimal prefix download sequence must satisfy


maximum (C(m))

s.t. i < j, if p_i is a more specific prefix of p_i , $\forall i$, $\forall j$


Heuristic Approach

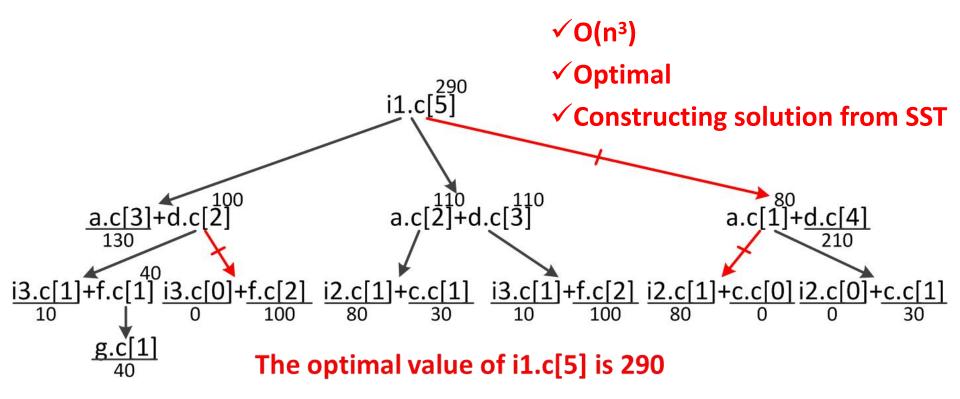
- Basic Idea: sort prefixes by popularity first, adjust prefix sequence when LPM violation is detected
- When traversing the prefix trie, for each visited prefix v, we define v.sub_min as the prefix of the minimal popularity in the subtrie rooted at prefix v.
- LPM violation condition: v.sub_min.pop < v.pop
- If we detect LPM violation, we can move v behind v.sub_min to eliminate the violation
- We do the "check-and-adjust" procedure for each node in the routing prefix trie, v.sub_min can be precalculated

Heuristic Approach (cont)

Optimal Approach by Dynamic Programming

Assuming v.I and v.r have been already solved as c(v.I) and c(v.r), construct v's solution c(v) based on v.I's and v.r's solutions

c(v) = recursion(c(v.l), c(v.r))


We need to build the recursive relations

Recursive Relations

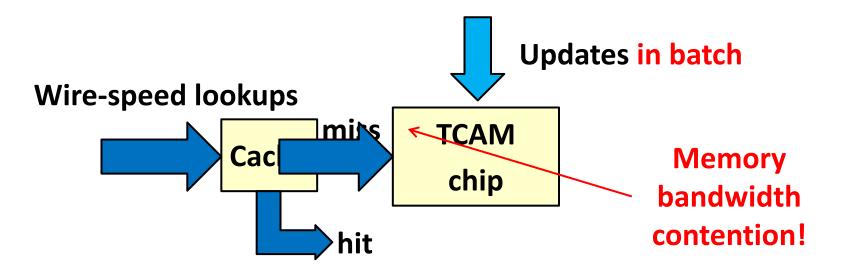
- For each prefix, we define v.c[i] as the cumulative popularity of the first i prefixes in the optimal prefix download sequence
- Hence, maximizing C(m) with LPM guaranteed is equal to solving root.c[m]
- Assuming v.l, v.r have already been solved, i.e., v.l.c[i] and v.r.c[i] have been calculated, we can derive v.c[i] according to the following recursive formulas
- If v is not included in the first i prefixes, we will have
 v.c[i] = max(v.l.c[i], ..., v.l.c[i-j] + v.r.c[j], ..., v.r.c[i]) 0 < j < i
- If v is included in the first i prefixes, we will have
 v.c[i] = sub_sum(v) // calculate the popularity summation of prefixes in the subtrie rooted at v
- Here, we leave out other boundary conditions for brevity

Solution Space Tree (SST)

• With memoization, we can generate the solution space tree (SST), from which we can construct the optimal solution

The optimal solution can be constructed from SST as {{{b}, Ø}, {d, e, f, g}}

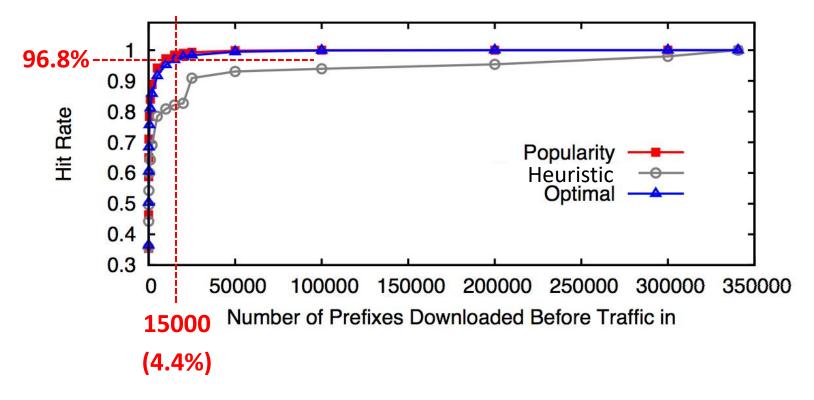
Batch Download of Routing Table


Traditional route download:

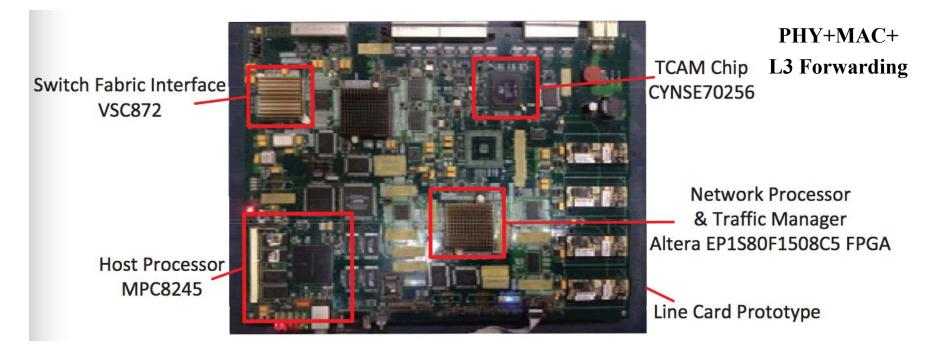
- (1) Routes downloaded from route processor to host processor
- (2) Host processor translates logic representation of routes into hardware-friendly instructions
- (3) Hardware executes the translated instructions

Fast route download (given host processor is standby): (1) Routes downloaded from route processor to host processor (2) Host processor translates logic representation of routes into hardware friendly instructions

(3) Hardware executes the translated instructions *in batch*


Reduce Lookup/Update Conflict by Caching

The cache can be de-allocated to on-chip memory pool when batch prefix update is completed


Evaluation of Prioritized Prefix Download

A routing table with 340584 routes, 60-minute traffic from 20Gbps gateway link

- Optimal's result is extremely close to Popularity's
- Heuristic works well with O(nlgn) complexity
- With Optimal, first 4.4% prefixes will cover 96.8% traffic

Wake up a Bare-Metal Router Prototype

Events	Time (ms)
software package downloaded via network	1000
VxWorks booted up	5000
routing table downloaded via network	4718.2
prefix parsing; trie construction	27539.6
prefix updated into TCAM	2545.3

0.3% of the original time!

× 0.05=127.27ms

Conclusion

- Systematic measurement subverts the presumption of zero-time link wakeup
- New designs to reduce the line card wakeup time
- Algorithms to tackle the LPM violation issue
- Engineering efforts to make the speedup
- Radical reduction (to 0.3%) of wakeup time on a bare-metal prototype built for design verification
- Promising to build better power-efficient Internet

Thank You!

Q & A