
BubbleTCAM: Bubble Reservation in SDN
Switches for Fast TCAM Update

Cong Luo§, Chuhao Chen§, Hao Mei§, Ruyi Yao§, Ying Wan†, Wenjun Li‡♢, Sen Liu§, Bin Liu†♢, and Yang Xu§♢∗

§School of Computer Science, Fudan University, Shanghai, China
†Department of Computer Science and Technology, Tsinghua University, Beijing, China

‡Harvard University, MA, USA ♢Peng Cheng Laboratory, Shenzhen, China

Abstract—The unique hardware structure of Ternary Content-
Addressable Memory (TCAM) enables its unparalleled lookup
throughput but also causes slow update due to the Priority Order
Constraint (POC). With the increase of application demands,
TCAM update has become a bottleneck in the network. This
paper proposes a new TCAM management mechanism named
BubbleTCAM to enable fast TCAM update, in which available
empty entries are defined as bubbles. The core idea of Bub-
bleTCAM is to uniformly distribute bubbles and dependency
chains in TCAM, which is beneficial to updates. BubbleTCAM
consists of two components: bubble management and rule in-
sertion. Bubble management enables TCAM to have uniformly
distributed bubbles at all times through three key procedures:
bubble lock reservation, bubble lock release and bubble generation.
Rule insertion ensures that dependency chains of rules are
uniformly stretched and distributed in TCAM. In addition,
BubbleTCAM avoids the reorder problem by pre-sorting. Our
evaluation based on the rulesets generated by ClassBench shows
that BubbleTCAM effectively reduces the average cost and worst
cost (in units of rule movements) during rule updates by at least
48% and 50%, respectively. Especially for the worst cost, the
performance can be improved by up to 196x.

Index Terms—TCAM, Update, Bubble

I. INTRODUCTION

Software-Defined Networking (SDN) [1] is increasingly
being adopted by datacenter and enterprise networks because
of its flexibility. The flexibility allows SDN to support a variety
of applications (such as access control [2], traffic inspection
[3] and flow filtering [4]) by customizing the flow table
rules in switches. Due to its unparalleled lookup throughput
and support for various matching patterns, Ternary Content-
Addressable Memory (TCAM) [5] becomes the most widely
used memory in SDN switches to store the flow table.

However, different from traditional memory devices (e.g.,
disk, SRAM, DRAM), TCAM suffers from slow updates due

* Corresponding author: Yang Xu (xuy@fudan.edu.cn)
This work is sponsored by Key-Area Research and Development Program

of Guangdong Province (2021B0101400001), National Natural Science Foun-
dation of China (62150610497, 62172108, 62002066, 62102203, 62032013,
61872213, 61432009), Shanghai Pujiang Program (2020PJD005), China Post-
doctoral Science Foundation (2021M690705, 2020TQ0158, 2020M682825,
PC2021037), Basic Research Enhancement Program of China (2021-JCJQ-
JJ-0483), Open Research Projects of Zhejiang Lab (2022QA0AB07), and the
Major Key Project of PCL (PCL2021A15, PCL2021A02, PCL2021A08).

to the so-called Priority Order Constraint (POC). When a
packet header matches multiple rules (due to the overlap
among ternary rules), TCAM uses a priority encoder to return
only the lowest matching rule (or the highest matching rule,
dependent on the implementation of TCAM). Therefore, to
ensure semantic correctness, rules overlapped must be stored
in TCAM with decreasing priority order (i.e., POC). During
TCAM update, a new rule must be placed in an empty entry
without violating POC. If there is no such an entry, some
existing rules need to be moved to make one. What is worse is
that TCAM usually allocates entries continuously from top to
bottom (or from bottom to top) [6], which causes a significant
number of movements to keep POC when new rules arrive.

During a rule update, the regular lookup operations have
to be suspended for the sake of consistency. The longer the
update takes, the greater delay packets will experience, which
may even lead to packet loss and degradation of Quality
of Service (QoS). Meanwhile, more and more applications
require strict update delay. For example, carrier networks have
a strict 50ms requirement for failure recovery [7], which means
that the re-routing rules must be installed within 25ms [8].
Traffic engineering only reserves 20ms to activate a new rule
[9] [10]. In security systems, the throughput requirements
are more stringent. However, the update delay in today’s
OpenFlow switches is far from what is required. As the
recent measurements show, the delay of commercial OpenFlow
switches to install rules ranges from 33ms to 400ms [11].

Despite a huge gap between update speed and delay require-
ments, the demand for rule update frequency is increasing.
SDN introduces a high policy churn rate due to its flexible
control of the network [12] [13] [14] [15]. As reported in
[16], in a datacenter composed of 4k servers, 200k flows
arrive every second, resulting in a large number of rules to
be installed in the switch.

It is essential to achieve efficient TCAM updates to meet
requirements of various applications. However, the existing
solutions have some limitations. First, although TCAM has
a completely different hardware structure and features from
traditional storage devices, most of the previous work has
adopted similar continuous memory (or entry) allocation
methods [17] [18] [19]. The continuous allocation is aimed
to exploit data locality to speed up data access [20] [21],978-1-6654-6824-4/22/$31.00 ©2022 IEEE

20
22

 IE
EE

/A
C

M
 3

0t
h

In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
Q

ua
lit

y
of

 S
er

vi
ce

 (I
W

Q
oS

) |
 9

78
-1

-6
65

4-
68

24
-4

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IW
Q

oS
54

83
2.

20
22

.9
81

29
04

Authorized licensed use limited to: Southeast University. Downloaded on April 15,2025 at 15:21:25 UTC from IEEE Xplore. Restrictions apply.

but in TCAM, it is unnecessary due to the parallel lookup.
Meanwhile, continuous allocation leads to a large number
of movements of existing rules when new rules are inserted.
Memory interval allocation may be a better choice. Second,
except for solutions using TCAM as a cache [22] [23] [24],
most of them only consider the scenario where the SDN
controller installs one rule at each time. But in reality, the
controller may install overlapping rules together [22] [23] [24]
[25] [26].

To overcome these limitations, we propose BubbleTCAM,
a new TCAM management mechanism to enable fast rule
updates. We propose a new concept: bubbles, which are the
available empty entries for new rules. The core idea is to make
bubbles and dependency chains (of existing rules) uniformly
distributed in TCAM to speed up the insertions of future new
rules. Through our analysis and experiments, maintaining the
uniform layout for both bubbles and dependency chains is
critical to accomplishing fast TCAM update. Therefore, we
introduce bubble management and rule insertion. The former
enables TCAM to have uniformly available bubbles at all times
through three key procedures: bubble lock reservation, bubble
lock release and bubble generation. The latter designs a novel
cost calculation method that allows the dependency chains of
rules to be uniformly distributed. The two core components are
both based on memory interval allocation and are adapted to
the scenario where the SDN controller delivers an overlapping
ruleset each time.

In summary, the paper makes the following contributions:

1) We design a novel scheme BubbleTCAM, which adapts
to realistic TCAM update scenarios, to achieve faster
updates. To our best knowledge, it is the first scheme
to systematically manipulate bubbles and use interval
entry allocation to effectively reduce the rule movements
during rule insertions.

2) To obtain uniformly distributed bubbles, we propose
bubble management, which achieves the goal through
three key procedures: bubble lock reservation, bubble
lock release and bubble generation. Meanwhile, we
introduce rule insertion to further accelerate the update,
which ensures that dependency chains of rules are uni-
formly stretched and distributed in TCAM.

3) The advantage of BubbleTCAM in two different phases,
warm-up phase and stabilization phase, is verified by
simulation. Compared to the state-of-the-art schemes,
BubbleTCAM reduces the average cost and the worst
cost by at least 51% and 12 times in the warm-up phase.
In the stabilization phase, the reduction is at least 48%
on the average cost and 50% on the worst cost. Even
for the worst cost, the performance can be improved by
up to 196x.

The rest of this paper is organized as follows. Section II
provides the background. The core motivation is presented
in Section III. Section IV discusses two strawman schemes
bubble management and rule insertion. Then, in Section V,
we give our optimization of the strawman schemes and the

Rule

11 0

10 1

11

100

000

0 01

01 0

01 1

01 11

Pri

18

15

14

11

9

6

4

2

1

(00 , 10)

(a) Flow table

r2

r4

r5 r8

r3

r6 r9

r1

r7

r10

(b) Dependency graph

Fig. 1: A TCAM update example

final insertion algorithm of BubbleTCAM. Evaluation results
are reported in Section VI. Section VII summarizes the related
work. Finally, Section VIII concludes the paper.

II. BACKGROUND

A. Priority Order Constraint

As mentioned above, the reason for slow update is that rules
overlapped must be stored in TCAM with decreasing priority.
We call this constraint Priority Order Constraint (POC). To
understand it better, we briefly introduce some definitions.

Application policies can be converted to one or more
ternary rules and stored in a flow table. A rule r =
(pri,match, action) comprises three parts [27]. r.pri denotes
the priority of a rule, and a larger value means a higher priority.
r.match defines a set of packet header prefixes or ranges, all
of which must be met to match the rule. r.action specifies
how to process the packet according to the matched rule. Most
commonly used actions include dropping packets, forwarding
packets to specific output ports, modifying packet headers
(e.g., decreasing TTL) and so on. ri and rj overlap when
ri.match∩rj .match ̸= ∅. A packet may match multiple rules,
and only the rule with the highest priority will win. TCAM
implements this mechanism by assigning low addresses (i.e.,
high positions) to rules with higher priority in the overlapping
rules. If ri.match ∩ rj .match ̸= ∅, and ri.pri > rj .pri,
we say rj is dependent on ri and use ri → rj to denote the
dependency. The position constraint is modeled as POC, which
can be formulated as the following equation:

∀ri, rj ∈ R, if ri → rj , ri.addr < rj .addr (1)

r.addr indicates the address of r in TCAM. In [18], it shows
that the dependency is a partial order relationship. That means
the relationship → is transitive. If ri → rj and rj → rk then
ri → rk, even though ri.match ∩ rk.match = ∅, ri must be
put above rk.

B. TCAM Update

TCAM update includes rule deletion, insertion and modi-
fication. Both deletion and modification are simple and fast.

Authorized licensed use limited to: Southeast University. Downloaded on April 15,2025 at 15:21:25 UTC from IEEE Xplore. Restrictions apply.

r2

r5 r8

r3

r6 r9

r1

r7

r4
r

r10

(a) Two dependency chains
in the dependency graph

0

1

2

3

4

5

6

7

8

9

10

11

r1
r2

r3

r5
r6
r7
r8
r9

TCAM

r4
(00 , 10)

(b) Back to back layout
(BBL)

0

1

2

3

4

5

6

7

8

9

10

11

r1
r2

r3

r5
r6

r7
r8
r9

TCAM

r4
(00 , 10)

(c) Back to back layout with
uniform bubble (BBL-UB)

0

1

2

3

4

5

6

7

8

9

10

11

r1
r2

r3

r5
r8

r6
r9
r7

TCAM

r4
(00 , 10)

(d) Stretch layout with uni-
form bubble (SL-UB)

Fig. 2: The impact of layout mode on TCAM update

Thus, in this paper, the TCAM update refers to insertion as
it is the most time-consuming operation. Fig. 1(a) shows a
flow table with 9 rules. Actions are omitted for convenience.
r10 is a new rule to be inserted and r10.pri = 10. According
to match field, r10 directly depends on r5 and indirectly on
{r6, r7}. In order to insert r10 correctly, and assuming that the
TCAM (addresses from low to high) is arranged in the same
way as the flow table, we have to make three movements.

To better guide the TCAM updates, we introduce the rule
dependency graph, which is commonly used to describe the
dependency in the flow table [17] [28] [29] and is a kind of
Directed Acyclic Graph (DAG). Fig.1(b) is the rule depen-
dency graph of Fig.1(a). Each node represents a rule. If rj is
dependent on ri, a directed edge is formed, pointing from ri
to rj . We call ri is the ancestor of rj , and accordingly rj is
the child of ri. This relationship is transitive, for example, the
child of rj is also the child of ri. A node without ancestors is
named root, and a node without children is named leaf. The
path starting from a root to a leaf is a dependency chain.
Generally speaking, the number of movements required to
insert a rule is related to the length of the dependency chain
in which it is located. Since a node can be located in more
than one dependency chain, there can be multiple movement
schemes for inserting a rule. The shorter the dependency chain,
the better the scheme. For r10, as shown, the blue dependency
chain is the best solution requiring three movements.

Although it is difficult enough to insert a rule, the actual
situation is more challenging. In many cases, the ruleset is
in the controller. When a packet P1(001, 100) arrives at the
SDN switch and fails to match any rule, the corresponding
rule will be installed in the switch. From the perspective of
the controller, P1(001, 100) matches r4 and r4 should be
installed. However, installing r4 merely will lead to false
matching for new packets matching the overlapping part of
r4 and r3 or the overlapping part of r4 and r2. For example,
when a packet P2(110, 100) arrives, it should be processed
by r3 as it has a higher priority than r4. But the real process
is that P2(110, 100) hits r4 and performs the wrong action.
Therefore, when a rule is to be inserted, it is necessary

to install all the rules that overlap with it and have higher
priorities (i.e., all its ancestors). This makes TCAM update
tougher.

III. MOTIVATION

Inserting a rule is essentially a procedure to find an empty
entry for the new rule. When there is no empty entry for
the rule to satisfy the POC, existing rules have to be moved
to make space. Under such circumstances, the number of
movements is proportional to the length of the dependency
chain between the desired insertion position and the nearest
empty entry. We call this length the interval chain length.
Therefore, shortening the interval chain length can speed up
TCAM updates. The following examples provide us with a
specific approach.

For the flow table in Fig. 1(a), Fig. 2(a) shows two depen-
dency chains in its dependency graph, which are represented in
blue and yellow respectively. The TCAM entries are numbered
from 0. We denote the i−th position of TCAM by Ti. If we
put the rules back to back as adopted by the previous scheme
(i.e., the empty entries are concentrated at the bottom), then
inserting r10 requires three movements as shown in Fig. 2(b).
The insertion position is T4, the nearest empty entry is T9,
and the length of the blue dependency chain between them is
three, which results in the three movements. The worst case
happens when a new rule is inserted at the top and the longest
dependency chain needs to be moved.

One improvement is to make the empty entries uniformly
distributed in the TCAM. The essence of this method is to
reduce the interval chain length by shortening the distance
between the insertion position and the nearest empty entry. In
Fig. 2(c), we manually place an empty entry every three rules.
When r10 is inserted, the insertion position is T5, the nearest
empty entry is T7, and the distance between them is two,
which is much closer than the previous continuous allocation
scheme. The interval chain length is also shortened to two,
which requires two movements accordingly. The worst cost
is reduced from the length of the longest dependency chain
to the longest interval chain length. As shown above, wisely

Authorized licensed use limited to: Southeast University. Downloaded on April 15,2025 at 15:21:25 UTC from IEEE Xplore. Restrictions apply.

(a) Average cost (b) Maximum cost

Fig. 3: Comparison among three layouts

managing empty entries can speed up the TCAM update. We
refer to such artificially manipulated empty entries as bubbles.

Movements numbers can be further reduced by making the
dependency chain uniformly distributed in the TCAM, which
indirectly shortens the length of the dependency chain between
two bubbles (i.e., the interval chain length). As shown in
Fig. 2(d), while making the bubbles uniformly distributed,
we also intersperse the blue and yellow dependency chains
to make them uniformly distributed. In this way, most rules
can be inserted in one movement, so can r10. We call this
layout of bubbles and chains uniformly distributed in TCAM
as Stretch Layout with Uniform Bubble (SL-UB) because it
likes stretching the dependency chains by the length of TCAM.
From the above example and analysis, we know that keeping
the TCAM in the SL-UB will benefit the TCAM update.

In order to verify the conclusion, we did some preliminary
simulation experiments. The experiments compare the average
cost and maximum cost of updating the same rules for the
three layouts. The cost is the number of movements, which is
represented by #N. The specific process is as follows. Given a
flow table, we randomly select a subset of rules as base rules
and pre-install them in three TCAMs according to the three
layouts. Then use the remaining rules as updates. During the
update, we only evaluate the cost of each insertion but do not
actually insert the rule into the TCAM. Since the insertion
may change the TCAM layout, the virtual insertion ensures
that the comparison object is always the same.

Due to space constraints, we only show the results of
FireWall (FW) rulesets generated by ClassBench [30] in Fig.
3. Ruleset sizes are from 8k to 25k. Access Control List(ACL)
and IP Chain (IPC) rulesets have similar conclusions. Fig. 3(a)
and (b) present the average cost and the maximum cost respec-
tively. The trends are roughly the same and consistent with the
above example and analysis. Compared with BBL, BBL-UB
reduces the average cost by 15 times and the maximum cost
by 3.3 times. As for the SL-UB, it decreases the average cost
by a further 17% compared to BBL-UB. The maximum cost
is reduced on most datasets. In summary, keeping the TCAM
in the SL-UB can greatly speed up the update, in which case
maintaining the bubbles’ uniformity is the key and maintaining
the dependencies chains’ uniformity is the icing on the cake.

TCAM

(a) Release G0

TCAM

(b) Release G2

TCAM

(c) Release G4

Fig. 4: Bubble lock release

IV. STRAWMAN SCHEME

Based on the above observation, keeping the TCAM in
the SL-UB is the key to achieving fast insertion. The imple-
mentation of SL-UB is divided into two parts: manipulating
bubbles to be uniformly distributed by bubble management
and making the dependency chains uniformly distributed in
rule insertion. In this section, we will present the strawman
schemes to accomplish the two parts respectively.

A. Bubble Management

Generally speaking, there are two ways to adjust the bubble
distribution. The first is to passively wait for rules to be
deleted, which will leave some scattered bubbles. The second
is to manually move the bubbles to some specific locations at
extra cost. However, both methods seem a bit extreme. The
former completely depends on the location of the deleted rules.
If there are no rules to be deleted, no bubbles will be generated.
The latter is too proactive, and the design of the scheme is
complicated due to rule dependency.

Therefore, we want to find a new method that can make
the bubbles uniformly distributed in the TCAM simply and
effectively. We introduce the concept of bubble lock to achieve
the goal. When an entry is locked by the bubble lock, no rules
can be inserted into the entry even if it is empty. We adjust
the bubble layout in TCAM by using bubble locks wisely. The
scheme can be summarized in two phases. The first phase is
called bubble lock reservation. In this phase, we use bubble
locks to lock all TCAM entries and divide them into p groups
according to their positions. The second phase is called bubble
lock release. Every time a new rule is inserted, we judge
whether its insertion cost c is greater than a given threshold

Authorized licensed use limited to: Southeast University. Downloaded on April 15,2025 at 15:21:25 UTC from IEEE Xplore. Restrictions apply.

k. If c < k, we insert the new rule directly, otherwise, we
randomly select a group to release their bubble locks so that
there are some uniform bubbles available in TCAM. We named
this scheme bubble management.

A concrete example is shown in Fig. 4. White indicates
that the entry is locked by a bubble lock. The other colors
represent the bubble locks that are released each round (i.e.,
available bubbles). We label the TCAM entries from 0, like in
Fig. 2. Then we take the label modulo 5, and the entries with
the same remainder are regarded as the same group. Thus, the
TCAM entries are divided into five equal parts, named G0, G1,
G2, G3 and G4 respectively. After bubble lock reservation, we
insert the first rule. The rule cannot be inserted because the
entries are all locked. We record the cost of not being able to
insert as infinity, which is greater than the threshold k. So we
release the bubble locks of G0 (G1, G2, G3 and G4 are also
possible), marked in blue in Fig. 4(a). As rules are inserted,
the bubbles will become fewer and fewer, so the insertion
cost will gradually increase. When the cost is greater than the
threshold k again, we will release the bubble locks of G2 as
shown in Fig. 4. Similarly, we will release the bubble locks
of G4 in the same case.

During the dynamic insertion process described above, there
are uniform bubbles available in the TCAM most of the
time. Of course, the selection of the threshold k and the
number of aliquots p are both important. k indicates our
definition of whether bubbles are sufficient in TCAM. When
the insertion cost is greater than k, we consider that there are
not enough bubbles. p represents how finely we control the
bubble distribution. Continuous allocation of entries (bubbles
at the bottom) is the special case of p = 1.

However, there is an obvious problem with bubble manage-
ment. After all bubble locks are released, we will no longer
be able to adjust the bubble layout. To solve the problem, we
need a bubble generation scheme.

B. Rule Insertion

Making the dependency chain uniformly distributed in the
TCAM is equivalent to making the rules the same relative
position in the chain and TCAM. If a rule is in the middle
of the dependency chain, then it should be inserted in the
middle of the TCAM. Specifically, as shown in Fig. 2(a),
r10 is a new rule and the other rules are already in the
TCAM. The ancestors of r10 are {r1, r2, r3, r4} and the
children are {r5, r6, r7}, which should be above and below
r10 respectively. Therefore, to make the dependency chain
uniformly distributed, r10 needs to be inserted in the position
of N ∗ 4

4+3 . N is the TCAM capacity. We call the scheme
rule insertion and define the optimal position as Rule Insertion
Position (RIP). ∀r ∈ R, if it has a ancestors and b children,
then RIP (r) = N ∗ a

a+b .
It seems that we can perfectly achieve the goal by inserting

each rule into its RIP. However, the RIP of a rule changes
dynamically as the rule is inserted. For example, before r10 is
inserted, RIP (r4) = N ∗ 3

3+5 . But after r10 is inserted, b of r4
changes from 5 to 6, so RIP (r4) = N ∗ 3

3+6 . The difference

becomes apparent when N is large or the dependency chain
is short (i.e., a + b is small). The essence of this problem is
that we cannot predict the future. It is vital to find a more
appropriate RIP calculation method to reduce the impact of
subsequent insertion rules.

V. BUBBLETCAM

Both the bubble management and the rule insertion are
inherently methods of implementing interval memory (entry)
allocation. Bubble management forces rules to be inserted at
intervals by restricting certain bubbles from being available.
The rule insertion actively inserts rules into the corresponding
RIP to achieve interval insertion. As demonstrated in Section
III, making TCAM use interval entry allocation is an effective
way to accelerate TCAM update.

Our final solution, BubbleTCAM, inherits the above ideas.
Moreover, it solves the problems of the strawman scheme
in the real scenario where overlapping rules need to be
installed together when inserting or deleting a rule. In the
following, we first introduce the optimization of rule insertion
and bubble management. Then we show the specific insertion
algorithm of BubbleTCAM. It designs a novel cost calculation
method, which makes rule insertion perfectly fit the three key
procedures of bubble management: bubble lock reservation,
bubble lock release, and bubble generation, to achieve fast
TCAM update.

A. Optimizations

1) More Reliable RIP: If r has a ancestors and b children,
then RIP (r) = N ∗ a

a+b . But as new rules are inserted, the
values of a and b may change. Therefore, the RIP calculated
at the time of insertion is not the real optimal position.

In reality, we actually have more information to exploit
during the insertion process. Fig 5(b) shows the workflow of
packet processing in SDN. When a packet comes, if it does
not hit any rules, the switch will ask the controller how to
handle this rule. The controller performs the same matching
process in its ruleset and returns the highest priority rule and its
ancestors, which is to maintain semantic correctness. So during
insertion, the number of ancestors is determined and will not
be changed by the rules of subsequent insertions. Only the
number of children is dynamically changing. The information
can be used to optimize the calculation of RIP.

Fig 5(a) is the ruleset of the controller. We assume that the
highest-priority rule hit by the packet is r10. Its ancestors are
identified in blue and its children in red. When installing r10,
the blue rules will be installed together, which means that r10
is determined to have four ancestors in TCAM. But red rules
are full of uncertainty. In the subsequent process, they may
or may not be delivered to the switch. If the probability of
the three children r5, r6, and r7 being the highest priority
matching rule for a certain packet is x, y, and z, respectively.
Then a more acceptable RIP for r10 should be N ∗ 4

4+x+2y+3z
(When installing r7, r5 and r6 must be installed together.
When installing r6, r5 must be installed.). But the probability
of the rule being installed is still not available to us. It is

Authorized licensed use limited to: Southeast University. Downloaded on April 15,2025 at 15:21:25 UTC from IEEE Xplore. Restrictions apply.

switch

pkt hit

miss+

RIP

r
10

(a) Ruleset in controller (b) Workflow with controller

r
5

r
6

r
7

SDN Controller

Fig. 5: Packet processing in SDN

also complicated to calculate RIP when the dependencies are
complex. So we have to approximate the probability with the
parameter α. For a rule r, RIP (r) = N ∗ a

a+αb . Through our
experiments, 0.3 is suitable for most datasets.

2) A Uniform Bubble Generation Scheme: Once all the
bubble locks are released, we lose control of the bubble
distribution. It also means that TCAM is about to fill up and
run out of bubbles. In order to take over the management
of bubble layout again and alleviate the contradiction that
the TCAM capacity is smaller than the size of the ruleset
that needs to be installed, we tailored a bubble generation
scheme for BubbleTCAM. It is also the third phase of bubble
management, called bubble generation.

Combined with BubbleTCAM’s unique insertion algorithm,
the deletion-based scheme can generate uniformly distributed
bubbles. The motivation is as follows. When deleting rules,
we also need to consider the rule dependency. The logical
relationship is the opposite of insertion. To insert a rule we
need to be careful about rules with a higher priority. But
during deletion, we should pay attention to lower priority rules.
Suppose the ruleset in Fig. 5(a) is already installed in TCAM.
If we want to delete r10, we must delete the red rules as
well. Otherwise, the false matching described in section II
may occur. Put it simply, to maintain semantic correctness,
deleting a rule from TCAM requires deleting its children
along with it. So if we delete a root node, we have to delete
all dependency chains starting from this root. At the same
time, one of the core ideas of BubbleTCAM is to make the
dependency chain uniformly distributed in TCAM. Therefore,
if embedded insertion can complete the task well, we can
select a root node and delete its corresponding dependency
chain to generate uniform bubbles.

The only criterion for selecting the root node is the pop-
ularity of the rules. We hope that the dependency chain we
choose to remove will not be reinstalled later. In other words,
we don’t want the hit rate to be damaged due to the generation
of bubbles. Like most cache methods, we use the past network
traffic to predict the subsequent network behavior. Each entry
in TCAM has an associated counter that records the number
of times the rule in the entry is matched. Considering that
the popularity of a root r represents the popularity of the

dependency chains starting from it, we use CNT (r)
n child(r) to

estimate it. The smaller the value the more we tend to delete r.
The n child(r) denotes the number of children, and CNT (r)
is the sum of the counters of all children. To make the count
time-sensitive, we reset it periodically. Whenever the insertion
cost is greater than the threshold k and there is no bubble lock
to release, we will select the most outdated root node to delete
according to the above method.

The performance of bubble generation depends on the uni-
formity of the dependency chains in TCAM after bubble lock
release is completed. Therefore, we want to adjust the relevant
parameters as strictly as possible to make the dependency
chain more uniform.

B. Insertion Algorithm

With the above optimizations, the key modules for TCAM
to maintain the SL-UB layout are in place. Next, we will
introduce the insertion algorithm of BubbleTCAM, which puts
everything together. It has a novel method for calculating
insertion cost, which is based on RIP. And it enables TCAM
to have uniformly distributed bubbles by bubble management.

When a miss is triggered, the controller will deliver the
corresponding rules and their RIPs as shown in Fig. 5. Then
the switch will insert the rules according to BubbleTCAM’s
insertion algorithm. Fig. 6 shows the overall workflow of
the insertion algorithm. Generally, it is divided into two
parts. On the left is the rule insertion, on the right is the
bubble management. The arrow in the middle represents their
interaction. Then we will show the workflow step by step.

Step 1: From rules to be inserted in a bunch, BubbleT-
CAM first sorts the rules in descending order of priority
and processes them in sequence. This is mainly to avoid the
reorder problem. The main reason for the reorder problem is
that the dependency is transitive. If we insert r1 and r4 first,
then insert r3. Before r3 is inserted, there is no dependency
between r1 and r4. It is fine to place r4 above r1 in TCAM
without violating POC. However, if r3 is to be inserted, which
happens to be a child of r1 and an ancestor of r4, r1 must
be moved above r4 because they have a dependency due to
the transitivity. Such a reorder problem requires a lot of effort
to solve. By sorting, rules are processed in the direction of
dependency transitions (i.e, ancestors must be inserted first),
thus avoiding the problem.

Step 2: Then for a single rule, e.g., r1 in Fig. 6, BubbleT-
CAM first identifies the candidate positions where it can be
inserted. If we refer to the ancestor with the lowest position
in TCAM as its youngest ancestor and the child with the
highest position as its oldest child, then all the entries between
its youngest ancestor and its oldest child are its candidate
positions. The youngest ancestor is the upper bound and the
oldest child is the lower bound. BubbleTCAM will calculate
an insertion cost for each candidate position and select the
smallest one for subsequent steps.

In BubbleTCAM, the insertion cost is divided into two parts.
One is the minimum number of movements required to insert

Authorized licensed use limited to: Southeast University. Downloaded on April 15,2025 at 15:21:25 UTC from IEEE Xplore. Restrictions apply.

r10

r1

r2
r3

r4

sort1

r10 r4 r3 r2

switch

r1

upper bound

lower bound

Part of TCAM

< ?
minimum cost C

3

2

Yes4

5

insert r1

No

4

bubble lock

reservation

available bubbles

bubble lock

release

bubble

generation

Rule Insertion

Bubble

Management

Fig. 6: The workflow of BubbleTCAM’s insertion algorithm

the position. It can be easily calculated by dynamic program-
ming [6] [8] [18] [31]. In the implementation, we adopt the
calculation method of Fastup [32]. The time complexity is
O(m log h), which is the best we know so far. m is the number
of TCAM entries and h is the diameter of the rule dependency
graph. We denote this part as Mcost(Ti). Ti is the ith position
in the TCAM.

The other part represents the impact on the TCAM lay-
out caused by the insertion into that candidate position.
This part can be divided into two sections. The first sec-
tion is diff(r, Ti) = |RIP (r)− i|, which denotes the dis-
tance between the optimal position RIP of the new rule
r and the candidate position Ti. The second section is∑

ri∈R[diff(ri, T
i
after)−diff(ri, T

i
current)]. R is the ruleset

that has been inserted into the TCAM. T i
current is the current

position of ri. T i
after is the position where ri is moved after

inserting the new rule. So the section reflects the influence
of the insertion on other rules. Specifically, a positive number
means they are further away from their RIP and a negative
number means they are closer to their RIP. The larger the
absolute value, the greater the impact. We also note that not
all rules will be affected. In the real case, only the rules on the
moving path need to be calculated. The longest moving path is
the longest dependency chain. Therefore, the time complexity
of this part is O(mh), which is acceptable. And due to bubble
management, the moving path is usually much shorter than h.

Therefore, for the candidate position Ti of the new rule r,
its cost is formulated in Equation 2.

Cost(Ti) = Mcost(Ti) + λ ∗ [diff(r, Ti)+∑
ri∈R

[diff(ri, T
i
after)− diff(ri, T

i
current)]]

(2)

λ is the trade-off between the current and future interests. A
larger λ indicates that we are more strict about TCAM layout.

Step 3: After calculating the cost of all candidate positions,
BubbleTCAM compares the minimum cost C with the thresh-
old k.

Step 4: If C is less than k, we insert the new rule into the
corresponding candidate position. Then move on to the next
rule. Otherwise, it means that there are not enough bubbles
in the TCAM. At this point, we need to obtain uniformly
distributed bubbles through the bubble management. Then
the bubble management first tries to release the bubble lock.

If successful, go to the next step. Otherwise, the bubble
generation selects a root node and deletes it along with the
associated dependency chains as described above.

Step 5: Once uniformly available bubbles are obtained,
BubbleTCAM will repeat the above steps for the rule until
it is successfully inserted into the TCAM.

As a feature, BubbleTCAM has several adjustable parame-
ters. Although the parameter adjustment is a bit complicated,
it also means that BubbleTCAM can be more flexible to adapt
to a variety of scenarios. First, when calculating RIP, we use α
to approximate the probability of the children being installed.
For datasets with poor locality, we take larger values. Then
in Equation 2, we use λ to make a trade-off between the
current insertion cost and the TCAM layout. We can make
the dependency chain distribution more uniform by making λ
larger. Finally, in the bubble management, we use the threshold
k as a sign that there are not enough bubbles in the TCAM.
The number of bubble locks released each time is also adjusted
by p. In the next section, we experimentally illustrate the
impact of some parameters on BubbleTCAM performance.
Most of these parameters have a unique inflection point in
performance, which is helpful for us to find the optimal value.

BubbleTCAM assumes that the ruleset in the controller is
known in advance, which is true in most cases. Although the
ruleset may change dynamically over time, we can adjust the
scheme accordingly. If there are a few rules changed, we can
ignore them and apply the traditional insert algorithm (such
as [18]) to those rules, which will not affect BubbleTCAM.
If a lot of rules are changed, we can periodically update the
dependency graph of BubbleTCAM and recalculate the RIP
to make the error acceptable.

VI. EVALUATION

A. Experimental Setup and Dataset

We compare BubbleTCAM with FastUp [32] and Chain
[18]. FastUp selects the best of the candidate positions and
Chain always chooses the lower bound (or upper bound)
as its insertion position. These two selection methods have
different effects on the TCAM layout. We implement them
in C++ and compile them using g++. The simulators are run
on a commodity server with the Ubuntu 18.04-LTS operating
system. As the Firewall (FW) rulesets have the most complex
dependencies, we use ClassBench [30] to generate FW rulesets

Authorized licensed use limited to: Southeast University. Downloaded on April 15,2025 at 15:21:25 UTC from IEEE Xplore. Restrictions apply.

(a) Average cost

196x

(b) Maximum cost

Fig. 7: Comparison with FastUp and Chain in warm-up phase

(a) Average cost

80x

(b) Maximum cost

Fig. 8: Comparison with FastUp and Chain in stabilization phase
with size from 10k to 25k to test the performance of all the
update algorithms. Packet traces are generated twice the size
of the corresponding rulesets. In all experiments the TCAM
capacity is 5k.

Due to the gap between TCAM and ruleset size, we set a
threshold M to define large rules to prevent too many rules in
a single installation. A rule is considered to be a large rule if
it has more ancestors than M . When a packet hits a large rule
in the controller, the controller no longer delivers the rule and
its ancestors, but generates a new rule based on the packet
header and sends it. The main metric used in experiments
is cost (measured by #N, which stands for the number of
movement steps). We do not compare the time to calculate
the moving path with FastUp and Chain, as we introduce the
deletion scheme. According to our experiments, if we don’t
need to delete the rules, the calculation time of BubbleTCAM
is about 2ms per rule. If we need to delete the rules, it takes
about 8ms per rule.

B. Comparison with Fastup and Chain

In order to reflect the contribution of each procedure of
bubble management to the performance of BubbleTCAM, we
divide the update process into two phases: warm-up phase
and stabilization phase. The warm-up phase demonstrates the
advantages of bubble lock reservation and bubble lock release.
And the performance of bubble generation is presented in the
stabilization phase. Once we need to delete rules, we consider
the warm-up phase over and enter the stabilization phase.
Since the previous algorithm does not consider rule deletion,
for fairness, we make FastUp and Chain delete the same rules
as BubbleTCAM. The cost of deleting a rule is 1. Parameters

are set to α = 0.3, λ = 0.001, k = 12, p = 2, M = 1500 (for
10k, 13k, 15k) or M = 750 (for 20k, 25k).

1) Warm-up Phase: The warm-up phase contributes the
most to BubbleTCAM’s superiority. Fig. 7(a) and (b) shows
the comparison of the average cost and the maximum cost
respectively. Compared to FastUp, BubbleTCAM reduces the
average cost by 0.51∼2.6 times and the worst cost by 12∼196
times. As for Chain, the reduction is 0.85∼1.74 times on
the average cost and 19∼206 times on the worst cost. The
reduction in the average cost of our scheme is mainly due
to the bubble lock which makes TCAM always have uniform
bubbles in the warm-up phase. The worst-case improvement is
because we avoid the reorder problem by sorting. Worst-case
tends to have a dramatic impact on the network, which indi-
cates tremendous packets may be suspended and consequently
dropped. Therefore, the improvement of the worst case cost is
critical.

2) Stabilization Phase: Fig. 8 presents the performance
comparison of stabilization phase. As above, the left and
right figures are the average cost and the maximum cost,
respectively. For FastUp, the average and worst costs are
reduced by 2%∼75% and 0.3∼ 80 times respectively. Chain is
similar. BubbleTCAM reduces the average cost by 3%∼107%
and the worst cost by 0.5∼61 times. The performance gain
is less pronounced, especially on the 20k and 25k datasets.
The main reason is that the huge gap between the ruleset size
and the TCAM capacity makes us have to adjust M to avoid
frequent misses. A smaller M means that the dependencies
of the rules in TCAM become simpler, which makes the
performance of all three schemes better. For the 10k dataset,

Authorized licensed use limited to: Southeast University. Downloaded on April 15,2025 at 15:21:25 UTC from IEEE Xplore. Restrictions apply.

(a) The effect of K (b) The effect of λ

Fig. 9: Effects of parameters

the reduction in the worst-case cost is not as significant as
before. This is due to the dataset size being only twice the
capacity of TCAM. After the first phase, the number of
insertions is small and the load pressure is light, resulting in
no reorder problem for the other two schemes. Except for the
two reasons, in general, BubbleTCAM reduces the average
cost by at least 48% and the worst cost by at least 42 times.

C. Effects of Parameters

Due to space constraints, we only present the effects of k
and λ. We use the 10k dataset and corresponding 20k packet
traces. Other parameters are set as α = 0.3, p = 2, M = 1500.
The number of rule updates varies with the parameters, so it
is not appropriate to compare the average cost. We take the
total cost instead.

Fig. 9(a) shows the effect of k with λ = 0.01. The upper and
lower sub-figures show the total cost and the maximum cost
respectively. The total cost is divided into two parts: deletion
cost and update cost. A smaller deletion cost means a larger
hit rate. The larger the maximum cost, the more complex the
rule dependency in TCAM. It can be seen that k should not be
too large or too small, and 40 is optimal. This is because if k is
too small, BubbleTCAM will report to the bubble management
that there are not enough bubbles when the TCAM is still
empty so that frequent deletions and insertions are performed.
For example, k = 32, the maximum cost is 1, but the total
cost is the largest. If k is too large, BubbleTCAM will be
insensitive and will not apply for bubbles when TCAM is
almost full, resulting in large costs (such as k = 62, the
maximum cost is 8). Therefore, for every λ there is an optimal
k that minimizes the total cost.

We adjust λ and find the corresponding optimal k to show
the effect of λ. We can find three conclusions from fig. 9(b).
Firstly, the optimal k value increases as λ increases. Secondly,
the larger the λ, the better the uniformity (the smaller the
value), which is obtained by calculating the difference between
the current position and RIP. The larger λ means that we pay
more attention to the layout. In this case, most of the cost in

BubbleTCAM comes from the change of the layout, which
causes the real moving cost to be ignored. So the maximum
cost is reduced. Finally, λ also has an optimal value. It can
make a great trade-off between the real insertion cost and the
TCAM layout so that the total cost is minimized (λ = 0.005
in the figure).

VII. RELATED WORK

A. Computation-Based Insertion Algorithm

Rule insertion cost consists of computation delay and
placement delay. The placement delay is proportional to the
number of movements and the computation delay is the time
it takes to find a short and correct sequence of moves. A
solution that achieves the least place delay in a short time
is pursued by academia and industry. RuleTris [8] and PoT
[18] define the rule dependency through DAG and partial
order theory respectively, and both use the method of dynamic
programming to find the shortest moving path. Due to the
unacceptable computation delay in dynamic programming,
FastRule [6] applies a greedy algorithm and Bit Indexed
Tree to calculate the moving path, and Fastup [32] employs
Sequential Stack-based Algorithm. Moreover, Fastup shows
that the previous solution to reordering problem may occur an
infinite loop, and proposes Rule Chain-based Algorithm.

B. Group-Based Insertion Algorithm

Some work groups ruleset according to certain charac-
teristics to speed up rule insertion. Mazu [33] divides the
ruleset into high-priority and low-priority parts and places
them in different blocks to eliminate the influence between
the two parts. MagicTCAM [19] groups together rules with
few dependencies, inspired by the fact that the fewer the
rule dependencies, the smaller the insertion cost. ABUT [34]
adopts the Topology-Order grouping when designing the batch
update algorithm. A potential problem with these methods is
that when a new rule is inserted, the group id of rules already
installed in the TCAM will change, which may complicate the
process.

Authorized licensed use limited to: Southeast University. Downloaded on April 15,2025 at 15:21:25 UTC from IEEE Xplore. Restrictions apply.

C. Other Methods

Very few methods have mentioned empty entries. Most
existing schemes keep the empty entries at the bottom (or
top) of TCAM. Shah et al. [17] designs an algorithm with
empty entries arranged in the middle. It reduces the worst case
from the longest dependency chain length L to L

2 . ABUT [34]
indicates that the more uniform the empty entry distribution
is, the better for TCAM updates. Empty entry distribution is
taken into account when designing the batch update algorithm.
However, ABUT has a loose control over empty entries and
only uses existing empty entries. The empty entry selection is
only compared when the insertion cost is the same.

Cacheflow [22] and T-cache [23] use TCAM as a cache
to narrow the gap between TCAM capacity and flow table.
And their algorithm is mainly designed for scenarios where
multiple rules are inserted at each time due to rule overlap
rules.

VIII. CONCLUSION

In this paper, we propose a new TCAM management mech-
anism, called BubbleTCAM, to reduce the gap between update
latency and application demands. To our best knowledge,
BubbleTCAM is the first scheme to systematically manipulate
bubbles and use interval entry allocation. Through two core
components, bubble management and rule insertion, BubbleT-
CAM always keeps TCAM as the SL-UB, which refers to the
uniformity of bubbles and dependency chains and can greatly
speed up the update. Testing FW rulesets with various sizes,
we show that BubbleTCAM performs well in update: com-
pared to the state-of-the-art approach, BubbleTCAM reduces
the average cost and worst cost by at least 51% and 12 times
in the warm-up phase. In stabilization phase, the reduction is
at least 48% on average cost and 50% on the worst cost.

REFERENCES

[1] J. Tourrilhes, P. Sharma, S. Banerjee, and J. Pettit, “The evolution of
sdn and openflow: a standards perspective,” IEEE Computer Society,
vol. 47, no. 11, pp. 22–29, 2014.

[2] F. Klaedtke, G. O. Karame, R. Bifulco, and H. Cui, “Access control for
sdn controllers,” in Proceedings of the third workshop on Hot topics in
software defined networking, 2014.

[3] W. Queiroz, M. A. Capretz, and M. Dantas, “An approach for sdn
traffic monitoring based on big data techniques,” Journal of Network
and Computer Applications, vol. 131, pp. 28–39, 2019.

[4] X. Yang, B. Han, Z. Sun, and J. Huang, “Sdn-based ddos attack detection
with cross-plane collaboration and lightweight flow monitoring,” in
IEEE Global Communications Conference (GLOBECOM), 2017.

[5] B. Salisbury, “Tcams and openflow-what every sdn practitioner must
know,” See http://tinyurl. com/kjy99uw, 2012.

[6] K. Qiu, J. Yuan, J. Zhao, X. Wang, S. Secci, and X. Fu, “Fastrule:
Efficient flow entry updates for tcam-based openflow switches,” IEEE
Journal on Selected Areas in Communications, vol. 37, no. 3, pp. 484–
498, 2019.

[7] B. Niven-Jenkins, D. Brungard, M. Betts, N. Sprecher, and S. Ueno,
“Requirements of an mpls transport profile,” 2009.

[8] X. Wen, B. Yang, Y. Chen, L. E. Li, K. Bu, P. Zheng, Y. Yang,
and C. Hu, “Ruletris: Minimizing rule update latency for tcam-based
sdn switches,” in IEEE 36th International Conference on Distributed
Computing Systems (ICDCS), 2016.

[9] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat
et al., “Hedera: dynamic flow scheduling for data center networks.” in
Nsdi, 2010.

[10] A. Pathak, M. Zhang, Y. C. Hu, R. Mahajan, and D. Maltz, “Latency
inflation with mpls-based traffic engineering,” in Proceedings of the
ACM SIGCOMM conference on Internet measurement conference, 2011.

[11] M. Kuźniar, P. Perešı́ni, and D. Kostić, “What you need to know
about sdn flow tables,” International Conference on Passive and Active
Network Measurement, pp. 347–359, 2015.

[12] B. Zhao, R. Li, J. Zhao, and T. Wolf, “Efficient and consistent tcam up-
dates,” in IEEE Conference on Computer Communications (INFOCOM),
2020.

[13] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with
a globally-deployed software defined wan,” ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4, pp. 3–14, 2013.

[14] G. Li, Y. Qian, C. Zhao, Y. R. Yang, and T. Yang, “Ddp: Distributed
network updates in sdn,” in IEEE 38th International Conference on
Distributed Computing Systems (ICDCS), 2018.

[15] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer, “Achieving high utilization with software-driven wan,”
in Proceedings of the ACM SIGCOMM Conference on SIGCOMM, 2013.

[16] R. Narisetty, L. Dane, A. Malishevskiy, D. Gurkan, S. Bailey,
S. Narayan, and S. Mysore, “Openflow configuration protocol: imple-
mentation for the of management plane,” in second GENI research and
educational experiment workshop, 2013.

[17] D. Shah and P. Gupta, “Fast updating algorithms for tcam,” IEEE Micro,
pp. 36–47, 2001.

[18] P. He, W. Zhang, H. Guan, K. Salamatian, and G. Xie, “Partial order
theory for fast tcam updates,” IEEE/ACM Transactions on Networking
(ToN), vol. 26, no. 1, pp. 217–230, 2017.

[19] R. Yao, C. Luo, X. Liu, Y. Wan, B. Liu, W. Li, and Y. Xu, “Magictcam: A
multiple-tcam scheme for fast tcam update,” in IEEE 29th International
Conference on Network Protocols (ICNP), 2021.

[20] E. Berg and E. Hagersten, “Statcache: A probabilistic approach to
efficient and accurate data locality analysis,” in IEEE International
Symposium on-ISPASS Performance Analysis of Systems and Software,
2004.

[21] Z. Guo, G. Fox, and M. Zhou, “Investigation of data locality in
mapreduce,” in 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (ccgrid), 2012.

[22] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Cacheflow:
Dependency-aware rule-caching for software-defined networks,” Pro-
ceedings of the Symposium on SDN Research, pp. 1–12, 2016.

[23] Y. Wan, H. Song, Y. Xu, Y. Wang, T. Pan, C. Zhang, and B. Liu, “T-
cache: Dependency-free ternary rule cache for policy-based forwarding,”
in IEEE Conference on Computer Communications (INFOCOM), 2020.

[24] B. Yan, Y. Xu, H. Xing, K. Xi, and H. J. Chao, “Cab: A reactive wildcard
rule caching system for software-defined networks,” in Proceedings of
the third workshop on Hot topics in software defined networking, 2014.

[25] B. Yan, Y. Xu, and H. J. Chao, “Adaptive wildcard rule cache man-
agement for software-defined networks,” IEEE/ACM Transactions on
Networking, vol. 26, no. 2, pp. 962–975, 2018.

[26] ——, “Bigmac: Reactive network-wide policy caching for sdn policy
enforcement,” IEEE Journal on Selected Areas in Communications,
vol. 36, no. 12, pp. 2675–2687, 2018.

[27] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM computer communication review,
vol. 38, no. 2, pp. 69–74, 2008.

[28] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak, “Maple: Sim-
plifying sdn programming using algorithmic policies,” ACM SIGCOMM
CCR, pp. 87–98, 2013.

[29] H. Song and J. Turner, “Nxg05-2: Fast filter updates for packet classi-
fication using tcam,” IEEE GLOBECOM, pp. 1–5, 2006.

[30] D. E. Taylor and J. S. Turner, “Classbench: A packet classification
benchmark,” IEEE/ACM transactions on networking, pp. 499–511, 2007.

[31] Y. Wan, H. Song, and B. Liu, “Greedyjump: A fast tcam update
algorithm,” IEEE Networking Letters, 2021.

[32] Y. Wan, H. Song, H. Che, Y. Xu, Y. Wang, C. Zhang, Z. Wang, T. Pan,
H. Li, H. Jiang et al., “Fastup: Compute a better tcam update scheme
in less time for sdn switches,” IEEE ICDCS, pp. 1175–1176, 2020.

[33] K. He, J. Khalid, S. Das, A. Akella, E. L. Li, and M. Thottan, “Mazu:
Taming latency in software defined networks,” Tech. Rep., 2014.

[34] Y. Wan, H. Song, Y. Xu, C. Zhang, Y. Wang, and B. Liu, “Adaptive batch
update in tcam: How collective optimization beats individual ones,”
IEEE Conference on Computer Communications (INFOCOM), 2021.

Authorized licensed use limited to: Southeast University. Downloaded on April 15,2025 at 15:21:25 UTC from IEEE Xplore. Restrictions apply.

