
Computer Networks 257 (2025) 110980

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

DeFlow: Differential flowlet switching for load balancing in datacenter
networks
Ying Wan a , Haoyu Song b, Yu Jia a, Yi Wang d , Ling Qian a,∗, Tian Pan c,∗

a China Mobile (Suzhou) Software Technology, China
b Futurewei Technologies, USA
c Purple Mountain Laboratories, China
d Southern University of Science and Technology, China

A R T I C L E I N F O

Keywords:
Load balancing
Differential flowlet switching
Flow classification
Data center networks

A B S T R A C T

Multipath enhances the reliability and bandwidth of datacenter networks, but it also necessitates effective
load balancing. The dynamic nature of traffic and diverse flow characteristics present significant challenges
in achieving optimal load distribution. Existing schemes either result in mediocre performance or rely on
hard-acquired global information, leading to poor FCT or high implementation costs. This paper introduces
DeFlow, a simple yet efficient flowlet-based load balancing scheme implementable on programmable switches
with a low cost. DeFlow distinguishes flowlets of large and small flows based on packet size and interval. It
employs distinct scheduling strategies for throughout-sensitive large flows and latency-sensitive small flows
under congestion by prioritizing the performance of small flows. Extensive experiments on NS-3 demonstrate
that DeFlow consistently outperforms competing schemes across various topologies and workloads, improving
the FCT of small flows and throughput of large flows simultaneously.
1. Introduction

As a fundamental infrastructure of the intelligence era, Data Center
Networks (DCNs) facilitate the storage, processing, and transmission of
data generated by applications such as AI model training, edge com-
puting [1], online gaming, and multimedia streaming [2]. To provide
high bandwidth, reliability, and scalability, DCNs usually employ multi-
rooted tree topologies like Fat-Tree [3], Spine-Leaf [4], and VL2 [5],
which support tens of terabits per second of bidirectional bandwidth
through multipath between end hosts across different racks. For in-
stance, a Fat-Tree network with four pods shown in Fig. 1(a) allows
four paths between servers in different pods, while there are two paths
between servers connected to different leaf switches for the Spine-Leaf
network in Fig. 1(b).

Despite the high aggregate bandwidth offered by these multipath ar-
chitectures, certain traffic characteristics pose significant challenges in
fully utilizing the bandwidth on all paths. (1) Transiency: Services such
as web search and database query exhibit bursty traffic patterns [6–8],
leading to transient congestion on certain paths. This underscores the
necessity for real-time congestion detection and swift traffic redirection
to suitable paths. (2) Locality: Traffic in DCN typically exhibits a
skewed distribution where a small number of large flows account for
the majority of the traffic, whereas numerous small flows contribute

∗ Corresponding authors (Tian Pan, Ling Qian).
E-mail address: 1003378739@qq.com (Y. Wan).

only a minor fraction [8,9]. Therefore, schemes such as ECMP [10],
which randomly hashes flows to paths, may achieve balanced dis-
tribution in terms of flow quantities but can result in severe load
imbalance due to flow size variance. (3) Differentiation: It is recognized
that large flows and small flows usually have distinct transmission
requirements. Specifically, large flows tend to be throughput-sensitive,
prioritizing sustained high bandwidth, while small flows are more
latency-sensitive [11,12], requiring low Flow Completion Time (FCT).
This diversity necessitates differentiated path allocation and scheduling
strategies to accommodate the needs of each type of flow.

Nowadays, poor load imbalance remains the culprit behind network
congestion, even in scenarios where overall bandwidth is sufficient.
Queuing delays and packet drops due to overflow on congested paths
significantly degrade the flow transmission performance [13,14], im-
pacting metrics such as FCT, overall throughput, and packet reordering.
Therefore, it is essential to leverage the multipath capabilities of DCNs
to distribute traffic effectively, thereby maximizing network bandwidth
utilization and boosting application performance.

During the past two decades, numerous works have delved into
the load balancing problem in DCN, which can be divided into three
categories based on the assumed deployment locations. (1) Switch:
Each switch distributes traffic to candidate ports based on various
https://doi.org/10.1016/j.comnet.2024.110980
Received 1 August 2024; Received in revised form 25 October 2024; Accepted 3 D
vailable online 9 December 2024
389-1286/© 2024 Elsevier B.V. All rights are reserved, including those for text and
ecember 2024

 data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
https://orcid.org/0000-0002-2093-7023
https://orcid.org/0000-0002-9095-6879
mailto:1003378739@qq.com
https://doi.org/10.1016/j.comnet.2024.110980
https://doi.org/10.1016/j.comnet.2024.110980
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2024.110980&domain=pdf

Y. Wan et al. Computer Networks 257 (2025) 110980
Fig. 1. Two typical DCN architectures.
granularities, varying from packet [15] to flow [16], flowcell [17],
and flowlet [18,19]. Finer granularity typically leads to a more bal-
anced path load. Random Packet Spraying (RPS) [15] supported by
many commercial switches (e.g., Cisco [20] and Broadcom [21]) is
the simplest scheme yet can achieve the near-perfect load balancing
and is listed as a key feature by Ultra Ethernet Consortium (UEC)
for Ethernet-based AI and HPC workload optimization [22]. However,
RPS increases the likelihood of packet reordering. This not only ex-
erts extra processing pressure (e.g., sorting) on the receiver but also
misleads the sender into perceiving congestion, leading to unnecessary
reduction in transmission rate. Distributing flowlets, bursts of packets
from a flow, by a silent time interval, achieves better load distribution
than ECMP and reduces the possibility of packet reordering compared
to RPS. However, it is congestion-agnostic, limiting its effectiveness
in reacting to network congestion; furthermore, the tiny adjacent-
packet interval (i.e., arriving time difference) in large flows poses a
practical challenge in accurately identifying flowlets. (2) Controller:
A central controller can designate a path for each flow according
to the flow size and path states (e.g., bandwidth utilization) [23–
28]. Although theoretically achieving optimal load balance through
global state awareness, they often suffer from delays that can extend
up to several seconds in production environments [29], preventing
timely adjustments during congestion. Moreover, they require special-
ized protocols to communicate link status and install numerous rules
frequently to implement routing decisions. (3) Endhost: Since switches
determine the forwarding port for each flow through hashing specific
packet header fields, endhosts can trigger rerouting at switches by
modifying these fields when congestion is detected [30–32]. However,
they require modifying the protocol stack and selecting the fields that
do not affect forwarding or flow semantics. Additionally, hashing are
unknown to the endhosts, there is no guarantee the newly selected
path is different or better. Moreover, path status is acquired through
explicit congestion notifications [33] or Round Trip Time (RTT) [34]
measurements. This approach is less effective to small flows as most
small flows conclude within one or a few RTTs [35].

An ideal load balancing scheme should maximize bandwidth utiliza-
tion and promptly respond to congestion, optimizing the FCT of small
flows and enhancing throughput for large flows simultaneously.

Our research identifies critical differences in size and duration be-
tween flowlets of large and small flows, which contribute to load imbal-
ance and congestion. Although it is possible to distinguish large flows
from small flows using custom header fields, this approach presents
scalability and implementation challenges. Fortunately, we can lever-
age the notable flowlet disparity to accurately distinguish large and
small flows at switches, without involving endhosts or controllers.
Additionally, we find that redirecting numerous small flows from a
congested path has minimal impact on alleviating congestion. Con-
versely, rerouting just a few large flows is enough to relieve congestion,
thereby reducing FCT for the remaining flows and enabling large flows
to access suitable paths for sustained high-speed transmission. Although
this may introduce slight packet reordering in some cases, the overall
enhancement in large flow throughput is substantial.
2
In light of these insights, we propose DeFlow, a novel load balancing
scheme that effectively overcomes the limitations of existing methods.
The principal methodology of DeFlow is twofold. (1) It distinguishes
between large and small flows and distributes their flowlets to bet-
ter paths when congestion is absent. (2) It employs differentiated
scheduling strategies to handle flowlets of large and small flows during
congestion, prioritizing small flows to enhance their FCT.

In this paper, we make the following major contributions:

• We demonstrate the notable disparities in average packet size and
intervals between large and small flows, and propose a simple
and efficient Flowlet Differentiating Algorithm (FDA) to promptly
and accurately identify the flowlets of both large and small flows
by considering the characteristics of the flow over a recent bout
of time with a primary focus on its current characteristics. The
computational and storage resources consumed by FDA are min-
imal, ensuring no impact on line-rate processing capabilities of
hardware switches.

• We propose the Flowlet Switching Algorithm (FSA) to apply
differential scheduling strategies for flowlets of large and small
flows. On the one hand, FSA always chooses the better one
between the original path and another randomly selected path to
forward each flowlet when no congestion happens. On the other
hand, when the original path endures congestion, FSA swiftly
redirects the large flows, which not only finds suitable paths
for sustained high-speed transmission for the throughput-sensitive
large flows, but also alleviates congestion on the original path
to keep low FCT and avoid packet reordering for the remaining
latency-sensitive small flows.

• We implement a hardware prototype of DeFlow on the Tofino-
based programmable switches at a low host and conduct extensive
simulations on NS-3 [36] to verify its performance. Compared
with RPS, ECMP, and LetFlow [18], DeFlow not only cuts down
the FCT of all flows by 1.56×, 1.41×, and 1.35×, but also results
in an improvement of 1.29×, 1.56×, and 1.15× for the throughput
of large flows, respectively.

The remainder of the paper is organized as follows. Section 2 pro-
vides the background. Section 3 discusses the related works. Section 4
details the key algorithms of DeFlow: FDA and FSA. Section 5 presents
the performance evaluation and hardware implementation. Finally,
Section 6 concludes the paper.

2. Background

In this section, we first illustrate the traffic locality through sta-
tistical analysis of the real-world DCN traffic; then we discover the
disparities in packet size and interval for large and small flows, which
can be used for fast flow size estimation.

Y. Wan et al. Computer Networks 257 (2025) 110980
Fig. 2. Traffic characteristics of Equinix datacenters.
2.1. Traffic locality

Traffic locality refers to the phenomenon that, in a short period of
time, a small number of large flows occupy the majority of the traffic.
Fig. 2(a) shows the traffic statistics of the Equinix datacenter [37]
at 13:15 on March 15, 2018, where the value (𝑎, 𝑏] on the X-axis
corresponds to the 5-tuple flows ranked from 𝑎% to 𝑏% and the Y-axis
represents the percentage of traffic contributed by these flows. It can
be seen that, after sorting the 1110,342 flows by size in decreasing
order, the top 10% of flows account for 88.26% of the traffic, and
the bottom 50% of flows comprise less than 1.5%. Our analysis of the
traffic collected from CERNET by IPTAS [38] at 12:56 CST on March
8, 2018 yields similar findings: the top 1.5% of flows contribute to
approximately 80% of the traffic. The statistical results on traffic from
other datacenters also validate the traffic locality [39–41].

The traffic locality tells us that load balancing based only on flow
count without considering the flow size (e.g., ECMP) is set to yield
sub-optimal results. When an excessive number of large flows are
unfortunately allocated to the same path, the path will be congested
while the other paths are underutilized.

2.2. Flowlet switching

On the other extreme, random packet spraying across multiple paths
can achieve perfect load balancing. However, this approach can lead to
excessive packet reordering. As depicted in Fig. 3(a), two consecutive
packets of the same flow, 𝑝1 and 𝑝2, are assigned to two different paths,
S0→S2→S3 and S0→S1→S3. Due to the different path delay, 𝑝2 arrives
at S3 before 𝑝1. The packet reorder may be interpreted as packet loss
and trigger sending rate reduction or even re-transmission, leading to
poor network goodput and flow performance. To counter this problem,
some designs apply a reorder buffer at the receiver which is expensive
to implement [17].

In the above example, if the time interval between 𝑝1 and 𝑝2 is larger
than the path delay difference, transmitting them via different paths
will not cause packet reordering. As illustrated in Fig. 3(b), a flow is
divided into two consecutive but non-overlapping flowlets 𝑓 𝑙1 and 𝑓 𝑙2.
A flowlet is a collection of continuous packets, of which the adjacent
packet interval does not exceed the timeout 𝛿 but the adjacent flowlet
interval is larger than 𝛿. As long as 𝛿 is large enough, transmitting
flowlets over different paths will not cause packet reordering.

2.3. Flow differentiation

The simplicity and ease of implementation make flowlet a promising
load balancing scheme in DCN. However, it grapples with two main
challenges. (1) It is difficult to set a suitable 𝛿. If it is too small, it
may still incur excessive packet reordering; otherwise, too few flowlets
can be detected and the scheme degrades to ECMP. (2) It does not
differentiate between large and small flows so it fails to catch their
different characteristics and cater for their unique needs.
3
After an in-depth analysis of real-world DCN traffic, we discover
that large flows and small flows show significantly different character-
istics in terms of packet size and interval. Figs. 2(b) and 2(c) present
the average packet size and interval of all flows after sorting in the
decreasing order of their sizes, where packet size and interval are
normalized with respect to the corresponding values of the first and
last 10% of the flows, respectively. It is evident that large flows have
a larger average packet size and smaller average packet interval. The
average packet interval of the last 10% of the flows is 19.97× larger
than that of the first 10% of the flows, while their packet size is 14.31×
smaller.

Considering the fact that a flowlet comprises consecutive packets
of the same flow, the discrepancy in packet size and interval between
large and small flows induces an even more pronounced difference
(e.g., 𝑎𝑣𝑔_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝑎𝑣𝑔_𝑠𝑖𝑧𝑒) at the granularity of flowlet. It is easy to get flowlets
for small flows, but it does not help too much on load balancing;
it is desirable to get more flowlets for large flows, but it is more
difficult. In this paper, we distinguish large and small flows based on
their characteristics and subsequently apply different path scheduling
strategies to them.

3. Related work

The DCN load balancing schemes can be classified based on the
main location they are implemented in, be it switches, controllers, or
endhosts.

3.1. Switch based solutions

ECMP is the standard load balancing scheme in DCN due to its
simplicity. It randomly assigns a path from multiple candidate paths
for each flow. While ECMP can approximately equalize the number
of flows assigned to each path, its ignorance of flow size leads to
potential congestion. Weighted Cost Multiple Path (WCMP) [42] allows
different number of flows to be assigned to each path based on its
weight. DFFR [43] assumes that both path capacities and flow sizes
are known in advance and directly allocates flows to the path with
the largest residual capacity. Due to the significant variations in flow
sizes, achieving load balancing between paths is challenging. Flare [44]
divides a flow into flowlets and scatters flowlets randomly to multiple
paths. It ensures a more balanced link utilization and reduces the proba-
bility of packet reordering. LocalFlow [45] constructs special matching
rules to spatially split a flow into multiple subflows and assigns a
path for each subflow. LetFlow reveals that flowlet can effectively deal
with asymmetric DCN topologies. Burstbalancer [46] uses sophisticated
sketch-based algorithms to detect the flow bursts and only switches the
path for the substantially large flowlets. It sacrifices the performance of
small flows which are more sensitive to delay and consumes too much
resource in programmable switches. The aforementioned methods are
all congestion-agnostic and do not react to congestion. Conga [47] and
Hula [48] are deployed on edge switches. They obtain global path

Y. Wan et al. Computer Networks 257 (2025) 110980
Fig. 3. Illustration of packet reorder and flowlet switching.
status through probe packets and distribute the flowlet on the least
congested link. They need specific communication protocols and unique
data structures to exchange and record path information, and need to
control the frequency of probe packets to prevent excessive bandwidth
consumption. Drill [13] compares the queue length of each egress port
on a switch and sends packets to the least congested port without
considering the packet reorders. LBT [49] applies different packet
spraying strategies based on the predetermined flow type. Specifically,
it directs packets of small and large flows to the least and relatively
congested ports, respectively, compromising the performance of large
flows. FAMG [50] identifies a flow as a large flow if two consecutive
packets entering a switch belong to the same flow and randomly
distribute its flowlets across all available links. Meanwhile, FAMG
sprays packets of small flows randomly on the less congested links,
which significantly increases packet reordering. BBN [51] employs a
binary neural network model for flow classification, which consumes
a relatively high amount of hardware resources. Besides, BBN relies
on the host to split flows into flowcells and distributes the flowcells
of a flow to its private links, with a higher probability of selecting
less congested links. Proteus [52] classifies paths into three priority
levels based on signals such as RTT and link utilization, and selects the
highest-priority available path for each flowlet at the source switch,
while downstream switches rerouting the packets if the cumulative
sojourn time is high. Note that Proteus, Conga, and Hula, which de-
termine the complete path for packets at the source switch, have two
main drawbacks. First, embedding path information in packet headers
leads to extra packet overhead and bandwidth wastage. Second, the
explosion of path numbers due to link combinations may exceed the
resource limits of the switches, resulting in poor scalability.

3.2. Controller based solutions

Hedera [53] reads the rate of each flow from the underlay switch,
then selects a path for each large flow to maximize the global path
utilization, and finally issues rules to the switches to guide subsequent
forwarding. Mahout [24] detects large flows through the socket buffer
size in sender and then informs the controller to allocate these large
flows to the least congested path according to the global path informa-
tion obtained from the switches. In FDALB [54], the sender marks the
packets of the large flows, the passing switch relies on the controller
to decide how to forward the large flows. Freeway [23] categorizes
paths into two types based on their utilization: high throughput and
low latency. It always assigns the optimal high-throughput path for
large flows reported by the switch, while the switch directly chooses the
least-congested path for small flows. Fastpass [55] is more aggressive:
the sender notifies the controller of its transmission requirements and
the controller then determines the sending time and path for each
packet. In DiffFlow [56], edge switches identify large flows based on
the duration time and notify the controller, which then issues corre-
sponding rules to guide the forwarding of subsequent packets of this
flow. For small flows, DiffFlow employs the ECMP strategy. Although
these solutions are good at preventing congestion, they rely on central-
ized controllers for decision-making [57], which leads to substantial
computational and communication overheads, making deployment at
scale challenging. Besides, the time required for the control loop may
be too long to react to the dynamic DCN conditions.
4
3.3. Endhost based solutions

MPTCP [58] divides the single flow into multiple subflows at the
sender by modifying certain header values. Flowbender [30] relies on
the ECN flag in the ACK packet to perceive the path congestion and
then modifies the header values of subsequent sent packets. Presto [17]
divides the flow into segments of a fixed size (e.g., 64 KB) at the
sender, and assigns different header values to each segment. Clove [31]
learns the mapping between the packet’s header values and the paths
by sending multiple rounds of probes before sending normal packets.
These solutions assume that the switches would hash on the packet
header to select a path for each packet. The protocol modification at
senders and the recovery at receivers bring additional computation and
storage requirements. Moreover, the header field selection needs to
ensure the switch can support it and the change of it will not affect
the forwarding and the other network services.

Table 1 offers a concise summary of the above-mentioned schemes,
covering their scheduling granularities, evaluation methods, deploy-
ment locations, utilized signals, and key limitations.

4. Algorithm description and implementation

Since large flows are the primary cause of load imbalance, and they
are not as sensitive to latency as small flows, an effective load balanc-
ing scheme should distinguish between these two types of flows and
employ differential path-scheduling strategies accordingly. We have
shown in Fig. 2 that large flows exhibit distinct differences in packet
size and adjacent-packet interval compared to small flows. In light of
such insight, FDA in DeFlow can accurately identify the flowlet of large
flows and FSA in DeFlow prioritizes the flowlets of small flows over that
of large flows, thereby simultaneously accommodating the throughput
sensitivity of large flows and the latency sensitivity of small flows.

4.1. Flowlet differentiation algorithm

Fig. 2 reveals that packet interval 𝛥𝑡 and packet size 𝑙 can be
used as hints to distinguish flowlets from large or small flows. The
implementation of flowlet differentiation needs careful consideration.
One can simply record the duration (𝑇), the number of packets (𝐶),
and the total number of bytes (𝐿) of each flowlet, calculate the average
packet interval 𝑔 = 𝑇

𝐶 , and the average packet size 𝑠 = 𝐿
𝐶 , and mark

flowlets with 𝑔 < 𝛼 and 𝑠 > 𝛽 as flowlets of large flows, where 𝛼
and 𝛽 are the predefined thresholds based on the real-world traffic
characteristics. However, such a scheme suffers a delay that makes it
hard to capture real-time flowlet changes, and it is susceptible to the
influence of the packets sent long time ago. As illustrated in Fig. 4(a),
the large flow’s flowlet 𝑓 𝑙1 which contains six packets 𝑝0∼𝑝5 never
meets the criteria (𝑔 < 12) to be identified as one for large flow, with
the changing average intervals 𝑔0∼5 = ⟨

20
1 , 382 ,

48
3 ,

53
4 ,

61
5 ⟩. However,

the flowlet 𝑓 𝑙1 fulfills the criteria if only the last four packets are
considered, during which 𝑔2∼5 is ⟨

10
1 ,

15
2 ,

23
3 ⟩.

As an alternate approach, one can only consider the currently
arriving packet and the last packet of the same flow when calculating

Y. Wan et al. Computer Networks 257 (2025) 110980
Table 1
Comparison of existing load balancing schemes.

LB
scheme

Deployed
location

Utilized
signals

Flow
classification

Scheduing
granularity

Evaluation
method

Primary
limitations

DFFR [43] Edge
switch

Path capacity,
Flow size

Packet
header

None Custom
simulator

Unbalancd load
between paths

Flare [44]
LetFlow [18]

Switch None None Flowlet NS-2 [59] Congestion-
agnostic

LocalFlow [45] Switch None None Subflow Custom
simulator

Excessive
forwarding rules

Burstbalancer [46] Switch Flowlet size None Large flowlet NS-2 Congestion-
agnostic

Conga [47] Edge
switch

Path’s
queue length

None Flowlet OMNET++ [60],
custom ASIC

Custom hardware

Hula [48] Edge
switch

Path’s
utilization

None Flowlet NS-2 Poor Scalability,
bandwidth waste

Drill [13] Switch Ports’
queue length

None Packet OMNET++ Increased
reordering,
custom hardware

LBT [49] Switch Ports’
queue length

Packet
header

Packet NS-2 Degrade FCTs of
large flows

FAMG [50] Switch Ports’
queue length

Flowlet
interval

Packet NSL-3 [36] Increased
reordering

BBN [51] Switch Ports’
queue length

Binary neural
network model

Flowcell NS-3 Endhost
modification

Proteus [52] Switch Path priority,
link utilization

None Flowlet NS-3 Poor Scalability,
bandwidth waste

Hedera [53] Controller Flow rate,
path utilization

None Flow NS-2 Poor Scalability,
long control loop

Mahout [24] Controller Path’s
queue length

Socket
buffer

Flow Custom
simulator

Endhost
modification

FDALB [54] Controller Flow size Packet
header

Flow Unknwon Endhost
modification

Freeway [23] Controller Path utilization,
port’s queue length

Flow
size

Flow htsim [58] Frequent
path partition

Fastpass [55] Controller Path utilization,
flow size

None Packet Custom
hardware

Low compatibility

DiffFlow [56] Controller None Flow duration
time

Packet Custom
simulator

Congestion-
agnostic,
long control loop

MPTCP [58] Endhost None None Subflow htsim Increased FCTs
of small flows

Flowbender [30] Endhost Path’s queue length None Flow NS-3 Long control loop

Presto [17] Endhost None None Flowcell OpenL vSwitch
[61]

Increased FCTs
of small flows

Clove [31] Endhost Path’s
queue length

None Flow NS-2 Excessive
probe packets

DeFlow Switch Port’s
queue length

Packet interval,
packet size

Flowlet NS-3 Minimal
reordering
of large flows
Fig. 4. Illustration of algorithm FDA (𝛼 = 12).
5

Y. Wan et al.

i

𝑔

F
c

S
T
r

o
w
a
w
t
a
c
f
d

d
t
i
t

𝑔

t
t

t

p

a

c
p
t
c
d

t

Computer Networks 257 (2025) 110980
Algorithm 1: Flowlet Differentiating Algorithm
Input: 𝑝𝑘𝑡: the arriving packet; 𝑓 𝑙: the flowlet 𝑝𝑘𝑡 belongs to.
Output:  : whether 𝑓 𝑙 belongs to the large flow.

1 𝑙 ← 𝑝𝑘𝑡.𝑠𝑖𝑧𝑒
2 𝛥𝑡 ← 𝑝𝑘𝑡.𝑡−𝑓 𝑙 .𝑡 ⊳ 𝑓 𝑙 .𝑡 is the last packet’s arriving time
3 if 𝑓 𝑙 .𝑣 ≠ 𝑓 𝑎𝑙 𝑠𝑒 then ⊳ 𝑓 𝑙 already exists
4 𝑠𝑝𝑟𝑒 ← 𝑓 𝑙 .𝑠
5 𝑔𝑝𝑟𝑒 ← 𝑓 𝑙 .𝑔
6 𝑠𝑛𝑜𝑤 ← 𝑙 × 𝑘−1

𝑘
+ 𝑠𝑝𝑟𝑒 ×

1
𝑘

7 𝑔𝑛𝑜𝑤 ← 𝛥𝑡 × 𝑘−1
𝑘

+ 𝑔𝑝𝑟𝑒 ×
1
𝑘

8 else ⊳ 𝑓 𝑙 does not exist
9 𝑠𝑛𝑜𝑤 ← 1

2
× 𝛽

10 𝑔𝑛𝑜𝑤 ← 2 × 𝛼

11 𝑓 𝑙 .𝑠 ← 𝑠𝑛𝑜𝑤 ⊳ update 𝑓 𝑙
12 𝑓 𝑙 .𝑔 ← 𝑔𝑛𝑜𝑤
13 if 𝑔𝑛𝑜𝑤 ≤ 𝛼 and 𝑠𝑛𝑜𝑤 ≥ 𝛽 then
14  ← 𝑡𝑟𝑢𝑒 ⊳ 𝑓 𝑙 belongs to the large flow

15 else
16  ← 𝑓 𝑎𝑙 𝑠𝑒
17 return 

average packet intervals and sizes to identify the large flow’s flowlet 𝑓 𝑙1
n Fig. 4(a). However, this tends to overreact to the situation illustrated

in Fig. 4(b), where the small flow’s flowlet 𝑓 𝑙2 includes six packets
and the adjacent-packet gaps are 𝑔0∼5 = ⟨

20
1 ,

16
1 ,

13
1 ,

10
1 ,

15
1 ⟩. Since

4 < 𝛼 = 12, this scheme would misclassify the flowlet 𝑓 𝑙2 as a large
flow’s flowlet according to the temporary condition fulfillment. When
identifying the flow size, we work on the same flowlets. However,
different algorithms may yield different results.

In order to promptly and accurately identify flowlets of large flows,
DA uses the weighted moving averages shown in Eqs. (1) and (2) to
alculate the smoothed interval 𝑔𝑖 and size 𝑠𝑖, respectively, at the time
𝑡𝑖 when the (𝑖 + 1)th packet 𝑝𝑖 of flow 𝑓 arrives with the size 𝑙𝑖, where
𝑘 is a positive integer and 𝛥𝑡𝑖 equals to (𝑡𝑖− 𝑡𝑖−1). As a safeguard, before
the first packet 𝑝0 of the flow arrives, we configure 𝑔0 > 𝛼 and 𝑠0 < 𝛽
(e.g., 𝑔0 = 2𝛼 , 𝑠0 = 𝛽

2).

𝑔𝑖 = 𝛥𝑡𝑖 ×
𝑘 − 1
𝑘

+ 𝑔𝑖−1 ×
1
𝑘

= 𝛥𝑡𝑖 ×
𝑘 − 1
𝑘

+ 𝛥𝑡𝑖−1 ×
𝑘 − 1
𝑘2

+ 𝑔𝑖−2 ×
1
𝑘2

= (𝑘 − 1)
(

𝛥𝑡𝑖
𝑘

+
𝛥𝑡𝑖−1
𝑘2

+⋯ +
𝛥𝑡1
𝑘𝑖

)

+
𝑔0
𝑘𝑖

= |

|

|

𝛥𝑡𝑖, 𝛥𝑡𝑖−1,… , 𝛥𝑡1, 𝑔0||
|

⋅

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑘−1
𝑘

𝑘−1
𝑘2

⋮
𝑘−1
𝑘𝑖
1
𝑘𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(1)

𝑠𝑖 = 𝑙𝑖 ×
𝑘 − 1
𝑘

+ 𝑠𝑖−1 ×
1
𝑘

= 𝑙𝑖 ×
𝑘 − 1
𝑘

+ 𝑙𝑖−1 ×
𝑘 − 1
𝑘2

+ 𝑠𝑖−2 ×
1
𝑘2

= (𝑘 − 1)
(

𝑙𝑖
𝑘
+

𝑙𝑖−1
𝑘2

+⋯ +
𝑙1
𝑘𝑖

+
𝑙0
𝑘𝑖+1

)

+
𝑠−1
𝑘𝑖+1

= |

|

|

𝑙𝑖, 𝑙𝑖−1,… , 𝑙1, 𝑙0, 𝑠−1||
|

⋅

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑘−1
𝑘

𝑘−1
𝑘2

⋮
𝑘−1
𝑘𝑖
𝑘−1
𝑘𝑖+1
1

𝑘𝑖+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(2)
r

6
Eq. (1) shows that 𝑔𝑖 can be expressed as a product of two matrices,
× T, in which S[𝑖] ⋅ T[𝑖] represents the part of 𝑝𝑖 and ∑𝑖−1

𝑗=0 S[𝑗] ⋅
[𝑗] corresponds to the last 𝑖 − 1 packets. Meanwhile, we obtain the
elationship shown in Eq. (3):

∀𝑖 ∈ 𝐍, 𝑘 ≥ 1 1
𝑘𝑖

+
𝑖

∑

𝑗=1

𝑘 − 1
𝑘𝑗

= 1
𝑘𝑖+1

+
𝑖+1
∑

𝑗=1

𝑘 − 1
𝑘𝑗

= 1 (3)

Eq. (3) shows that FDA does not treat every packet in the lifespan
f a flowlet equally. Instead, it assigns greater weight to recent packets,
hich better reflects the latest properties of the flowlet; older packets
re assigned smaller weight values accordingly. By adjusting the effect
eights different packets have on 𝑔, 𝑔 becomes more accurate to reflect

he current state of the flowlet. 𝑘 can be viewed as the rate of packet
ging, with larger values indicating a faster aging rate. 𝑔 reflects the
haracteristics of the flowlet over a recent bout of time while primarily
ocusing on its current characteristics, which helps FDA avoid the
elayed response and overreaction.

We use the example in Fig. 4(c) to illustrate the specific calculation
process of 𝑔 in FDA and list the corresponding pseudo code in Algorithm
1. In Fig. 4(c), we set the aging coefficient 𝑘 = 2 and the flowlet
ifferentiation threshold 𝛼 = 12. When the first packet 𝑝0 arrives at
ime 𝑡0 = 0, 𝑔0 is set to 2𝛼 = 24. Next, 𝑝1 arrives at time 𝑡1 = 20, the
nterval between 𝑝1 and 𝑝0 is calculated as 𝛥𝑡1 = 𝑡1 − 𝑡0 = 20. According
o Eq. (1), 𝑔1 = 𝛥𝑡1 ×

2−1
2 + 𝑔0 ×

1
2 . Following this process, when packets

𝑝2, 𝑝3, 𝑝4, and 𝑝5 arrive, the corresponding 𝑔2, 𝑔3, 𝑔4, and 𝑔5 are 20, 15,
10, and 9 respectively. Since 𝑔4 < 𝛼, the flowlet 𝑓 𝑙1 is determined to
belong to a large flow when 𝑝4 arrives. As shown in Fig. 4(c), even
though we set the initial value of 𝑔 to a conservative value 2𝛼 and the
intervals of the first three packets are large, 𝑔 can still quickly reach the
threshold when the packet arriving rate increases. Fig. 4(d) shows the
’s calculation process of 𝑓 𝑙2. Despite the transient increases in packet

arriving rates at the time 𝑡4 (i.e., 𝛥𝑡4 < 𝛼), FDA maintains 𝑔4 > 𝛼 due
o its consideration of the currently arriving packet 𝑝4 and the previous
hree packets.

As shown in Algorithm 1, FDA mainly involves three parameters
o be configured in practical deployment: the packet aging rate 𝑘, the

packet interval threshold 𝛽, and packet size threshold 𝛼 for identifying
flowlets of large flows. First, a larger 𝑘 ensures that the average
packet interval 𝑔 and packet size 𝑠 in FDA reflect the most recent
characteristics of the flowlet. In extreme cases, as 𝑘 approaches infinity,
𝑔 and 𝑠 are equal to the interval and size of the currently arriving
packet, respectively. This is particularly beneficial during frequent
micro-bursts, as a larger 𝑘 is preferred to prevent delays in identifying
large flows. Conversely, If minimizing packet reordering is the primary
concern, lowering 𝑘 will ensure that only flows with sustained large
packets are classified as large flows. However, this may hinder the
proactive alleviation of congestion. Second, the values of 𝛼 and 𝛽 should
be aligned with the characteristics of the underlying physical network
or the definition of large flows. For example, if a flow is classified as
large flow when it occupies more than 𝛾 of a port’s bandwidth 𝐵, then
𝛼
𝛽 should be set greater than 𝛾 × 𝐵. In the future, we plan to explore
AI-based methods [62,63] to more proactively and flexibly adjust the
arameters in FDA.

4.2. Flowlet switching algorithm

After determining whether the flowlet 𝑓 𝑙 belongs to a large or
 small flow, DeFlow uses FSA to apply a differentiated strategy to

it. If 𝑓 𝑙 belongs to a large flow and the path it uses is experiencing
ongestion, FSA switches 𝑓 𝑙 to another randomly selected candidate
ort, regardless of whether 𝑓 𝑙 has reached the flowlet timeout. For
he other scenarios, FSA considers both the state of previously and
urrently selected ports, as well as the characteristics of 𝑓 𝑙 before
eciding whether or not to change the port for 𝑓 𝑙.

We illustrate the differentiated path-switching strategy of FSA using
he example in Fig. 5 and list the corresponding pseudo code in Algo-
ithm 2. In Fig. 5, 𝑝 and 𝑝 are respectively the last and current packet
𝑖−1 𝑖

Y. Wan et al. Computer Networks 257 (2025) 110980
Fig. 5. Illustration of algorithm FSA (𝜃 = 2).
Algorithm 2: Flowlet Switching Algorithm
Input: 𝑝𝑘𝑡: the arriving packet.
Output:  : the egress port for 𝑝𝑘𝑡.

1 𝑓 𝑙 ← FlowletLookup(𝑝𝑘𝑡)
2  ← FlowletDiffAlg(𝑓 𝑙 , 𝑝𝑘𝑡) ⊳ classify the 𝑓 𝑙
3 𝑟𝑛𝑑 ← RoutingLookup(𝑝𝑘𝑡) ⊳ randomly select a port
4 if 𝑓 𝑙 .𝑣 ≠ 𝑡𝑟𝑢𝑒 then ⊳ the first packet of a flow
5 𝑓 𝑙 .𝑣 ← 𝑡𝑟𝑢𝑒
6  ← 𝑟𝑛𝑑

7 else
8 𝑝𝑟𝑒 ← 𝑓 𝑙 .𝑝 ⊳ 𝑝𝑟𝑒 is the last selected port
9 𝛥𝑡 = 𝑝𝑘𝑡.𝑡 − 𝑓 𝑙 .𝑡
10 if 𝑝𝑟𝑒.𝑞 𝑙 𝑒𝑛 > 𝜃 then ⊳ 𝑝𝑟𝑒 is congested
11 if  ≠ 𝑓 𝑎𝑙 𝑠𝑒 then ⊳ 𝑓 𝑙 belongs to large flow
12  ← 𝑟𝑛𝑑 ⊳ instant switching

13 else if 𝛥𝑡 ≤ 𝛿 then
14  ← 𝑝𝑟𝑒 ⊳ instant keeping

15 else
16 if 𝑟𝑛𝑑 .𝑞 𝑙 𝑒𝑛 > 𝑝𝑟𝑒.𝑞 𝑙 𝑒𝑛 then
17  ← 𝑝𝑟𝑒 ⊳ conditional keeping

18 else
19  ← 𝑟𝑛𝑑 ⊳ conditional switching

20 𝑓 𝑙 .𝑡 ← 𝑝𝑘𝑡.𝑡
21 𝑓 𝑙 .𝑝 ← 
22 return 

of the flowlet 𝑓 𝑙, 0 is the egress port to which 𝑝𝑖−1 was forwarded and
1 is a randomly selected port for 𝑝𝑖. In determining whether 𝑝𝑖 uses
0 or switches to 1, FSA divides the process into four cases:

• Instant switching: As shown in Fig. 5(a), if 𝑓 𝑙 is determined to
belong to a large flow and 0 is congested (i.e., the queue length
of 0 exceeds the preset congestion threshold 𝜃), FSA changes 𝑓 𝑙’s
egress port to 1, regardless of the interval between 𝑝𝑖−1 and 𝑝𝑖.

• Instant keeping: As shown in Fig. 5(b), if 𝑓 𝑙 is determined to
not belong to a large flow and the interval between 𝑝𝑖−1 and 𝑝𝑖
is less than the flowlet timeout 𝛿, FSA keeps 𝑓 𝑙’s egress port 0
unchanged, without considering whether 0 is congested or not.

• Conditional switching: As shown in Fig. 5(c), if 𝑓 𝑙 is determined
to not belong to a large flow, and the interval between 𝑝𝑖−1 and
𝑝𝑖 is larger than 𝛿, with the additional condition that 1 is less
congested than 0 (i.e., 1.𝑞 𝑙 𝑒𝑛 < 0.𝑞 𝑙 𝑒𝑛), FSA switches the
egress port of 𝑓 𝑙 to 1.

• Conditional keeping: As shown in Fig. 5(d), if 𝑓 𝑙 is determined
to not belong to a large flow and the interval between 𝑝𝑖−1 and
𝑝𝑖 is larger than𝛿, with the additional condition that 1 is more
congested than 0, FSA keeps 𝑓 𝑙 egress port 0 unchanged.

The rationale for the approach is as follows. When congestion occurs
at port 0, switching flowlet 𝑓 𝑙 of large flows using it to other ports can
rapidly alleviate its congestion. However, the packet interval of 𝑓 𝑙 may
prevent identifying the suitable switching opportunities in a short time,
leaving the congestion episode unattended at  . To counteract this,
0

7
𝑖𝑛𝑠𝑡𝑎𝑛𝑡-𝑠𝑤𝑖𝑡𝑐 ℎ𝑖𝑛𝑔 does not wait for the flowlet switching opportunities
and immediately alters the transmission path for 𝑓 𝑙. While this may
result in temporary packet reordering for a few large flows, it can
alleviate or even eliminate the congestion at 0, which not only allows
lots of latency-sensitive small flows passing through 0 to complete
their transmissions sooner, but also allows throughput-sensitive large
flows to find another high-throughput path to transmit at high speeds
over a long period of time. The negative effect of packet reordering on
large flows is easily absorbed.

On the other hand, the traffic of small flows is minor as shown
in Fig. 2(a). Hence, removing small flows from the congested port
 or reducing its sending rate cannot help alleviate congestion at
 much. Besides, the potential packet reordering caused by instantly
switching a flow’s egress port is much more detrimental to small flows
by significantly increasing their completion time. Therefore, if and
only if the packet interval of small flows reaches the flowlet timeout,
will FSA consider to switch their paths. It takes into account both the
queue lengths of the previously and newly selected ports. This approach
prevents the packet reordering and allows the small flows to complete
faster.

4.3. Implementation

DeFlow can be implemented on programmable switches widely
deployed in the datacenter networks. From the algorithm description
of FDA and FSA, the primary functionalities involve flow table lookups,
register reads, and arithmetic operations, which are well supported
by commercial programmable switches such as Tofino-1 and Tofino-2.
Implementing DeFlow in programmable switches faces two challenges.
(1) Some switches’ data planes do not support the multiplication and
division operations which are needed by the aging process in FDA; (2)
FSA requires acquiring the queue length of the egress port during the
ingress stage of the pipeline.

In response to the first challenge, we approximate the multiplication
and division operations using bit shifting and addition/subtraction
operations, which are supported by most programmable switches. For
instance, 𝛥𝑡 × 1

2 and 𝛥𝑡 × 1
3 can be approximated as 𝛥𝑡 >> 1 and 𝛥𝑡

>> 2 + 𝛥𝑡 >> 4, respectively. As for acquiring the queue length of
the egress port at the ingress pipeline, many programmable switches
such as Tofino-2 already support this feature by periodically writing
the queue lengths of all egress ports into a set of registers in the ingress
pipeline. For the programmable switches which can only obtain the
queue length at the egress pipeline, we can realize this functionality
using mechanisms such as packet looping/replication.

An alternative approach is to encapsulate the queue length at the
egress stage of switch S into the packets sent to the neighboring switch
S′ where the information is stored and piggybacked by the packets
towards S through the reverse link. Given each port has a buffer size of
1024 KB and the average packet size is 1500 Bytes, adding a (log2 1024)-
bit custom field to the original packet header would allow adjacent
switches to exchange the queue lengths of their connected ports. This
approach results in bandwidth overhead of only log2 1024

1500×8 × 100% = 0.08%.
Additionally, each switch with 𝑛 ports requires just 𝑛 × log2 1024 bits
of SRAM to store the queue lengths of the connected ports of adjacent
switches. Clearly, both the bandwidth and resource consumption of this
approach are negligible.

Y. Wan et al. Computer Networks 257 (2025) 110980
Fig. 6. Two typical DCN network topologies with two typical communication patterns.
4.3.1. Analysis
Using LetFlow as a baseline, we analyze the additional overhead

introduced by DeFlow’s two algorithms FSA and FDA when deployed
on switches. Note we exclude those shared components, such as the
routing table for random port selection.

Both LetFlow and DeFlow utilize a flowlet lookup table to identify
the flowlet associated with each packet. However, LetFlow only records
the departure time and egress port of the last packet for each flowlet.
In contrast, DeFlow requires additional information: the average packet
size and interval for each flowlet to facilitate large flow detection in
FDA. Consequently, DeFlow requires an additional 𝑚 × 𝑤𝑠 × 𝑤𝑖 bits
of register resources, where 𝑚 is the number of recorded flowlets, 𝑤𝑠
and 𝑤𝑖 represent the bit width for packet size and interval, respectively.
On the other hand, LetFlow performs two comparisons to check flowlet
existence and decide on egress port. In contrast, as shown in Algorithms
1 and 2, DeFlow needs additional 2 and 4 comparisons to identify large
flows and egress port, respectively. Therefore, DeFlow’s flowlet lookup
table requires 2+4+2

2 times more ALU resources to execute comparison
action than LetFlow.

In terms of time complexity, DeFlow’s operations including table
lookups and register read/write can be completed in O(1) time, in-
curring no impact on line-rate processing capabilities of hardware
switches.

5. Implementation and evaluation

We evaluate the effectiveness of DeFlow through extensive simu-
lations using the network simulator NS-3, comparing its performance
(e.g., FCT, throughput, and queue length) with other state-of-the-art
load balancing schemes, such as RPS, ECMP, and LetFlow, which
schedule paths at different granularities: packet, flow, and flowlet, re-
spectively. Additionally, we implement the hardware prototypes on the
Tofino-based EdgeCore Wedge 100BF-32X switch [64] to compare their
resource consumption, demonstrating DeFlow’s scalability in large-
scale datacenter networks. The implementations of these existing load
balancing schemes in both the software simulator and the hardware
switches are based on the prior works [65,66].

5.1. Testbed

5.1.1. Topologies
We conduct simulations on two typical DCN topologies: Spine-Leaf

and Fat-Tree, as depicted in Fig. 6. The Spine-Leaf network consists of
two spine switches, four leaf switches, and 32 servers. As illustrated in
Fig. 6(a), there are eight equal-cost paths for inter-leaf communications
in the Spine-Leaf network. The Fat-Tree network in Fig. 6(b) comprises
four pods with a total of 32 servers and 20 switches. The edge and
aggregation switches within each pod are interconnected through four
links to form a full mesh, while the aggregation and core switches
across the pods are interconnected through 16 links to form another
level of full mesh. Therefore, the intra-pod and inter-pod communica-
tion in Fat-Tree network has two and four paths, respectively. All links
8
Table 2
Two typical communication patterns in our testbed.

Communication pattern Ring All2all

Topology Spine-Leaf Fat-Tree
Sender→Receiver s[𝑖]→ s[(𝑖+8)%32], 𝑖∈[1,32] s[𝑖]→ s[𝑗], 𝑖≠𝑗∈[1,32]

are configured with a capacity of 10 Gbps and the oversubscription
ratio of both the Spine-Leaf and Fat-Tree networks is 1:2, a typical value
in real-world datacenters. Additionally, we also test the performance of
load balancing schemes under asymmetric topologies, where two links
experience failures [67] as indicated by the red cross in Fig. 6(a).

5.1.2. Workloads
The performance evaluation is based on the workloads derived

from three representative applications in datacenter environments: Web
Search (WS) from a production cluster [14], Data Mining (DM) from
a large enterprise datacenter [47], and Remote Procedure Call (RPC)
from a laboratory cluster [68]. Their traffic characteristics are shown in
Fig. 7, in which the rectangular red dots represent the real-world traffic
distribution of the applications, while the green solid line and the blue
dashed line depict the distribution of the synthetic traffic generated
based on the real-world traffic. It can be observed from Fig. 7 that the
characteristics of the synthetic traffic closely match that of the real-
world traffic. Notably, all three types of traffic show strong locality,
with just 20% of large flows contributing to 86%, 99.96%, and 97% of
the total traffic volume for WS, DM and RPC, respectively.

5.1.3. Communication patterns
We select two communication patterns widely used in the dis-

tributed AI training: Ring for the Spine-Leaf network and All2all for the
Fat-Tree network, as shown in Table 2. In the Ring pattern, the traffic
is consistently sent from the 𝑖th server 𝑠[𝑖] connected to the leaf switch
𝐿 𝑖

8
to the server 𝑠[(𝑖 + 8)%32] connected to the leaf switch 𝐿 (𝑖+8)%32

8
. In

the All2all pattern, every server sends traffic to all other servers.

5.1.4. Parameters
Given that a large flowlet timeout 𝛿 can reduce the likelihood of

packet reordering but increase the probability of load imbalance, we set
the value of 𝛿 on the order of RTT (50 us) according to the suggestion
in [18,46], which can effectively fragment bursts into flowlets, striking
a desirable balance between packet reordering and load balancing. For
DeFlow, based on the statistical analysis of traffic in Figs. 2 and 7,
we set the thresholds 𝛼 and 𝛽 for identifying large flow’s flowlet to
2 and 1000, respectively, i.e., if the average size 𝑠 and adjacent-packet
interval 𝑔 of the mostly recent packets within the same flowlet exceeds
1000 bytes and less than 2 us, respectively, it is identified as belonging
to a large flow. Furthermore, to ensure that newly arriving flows are not
immediately classified as large flows, we configure the initial values for
new flows (i.e., 𝑠0 and 𝑔0) to be 2𝛼 and 𝛽

2 , respectively. Additionally,
we set the rate of packet aging 𝑘 to 2, allowing 𝑠 and 𝑔 to encompass
the flowlet characteristics over a period but put more emphasis on the
most current traits.

Y. Wan et al.

n
f
r
5
t
t
s
q
e
i

R

Computer Networks 257 (2025) 110980
Fig. 7. The characteristics of three real-world workloads used in our testbed.
Fig. 8. The FCT and throughput across different load ratios on [WS,Spine-Leaf,Ring].
Fig. 9. The FCT and throughput across different load ratios on [RPC,Spine-Leaf,Ring].
d
l
a
p
a
e
F
a
c
f
c
s
p

t
p
i

5.1.5. Metrics
We mainly compare DeFlow with competing schemes in terms of

FCT under various network topologies, application workloads, commu-
ication patterns, and load pressures. Further, since large and small
lows have different sensitivities to throughput and latency, we sepa-
ately compare the FCT of large flows (top 5%) and small flows (bottom
0%), as well as the throughput of large flows. In addition, to reflect
he reordering pressure at the receivers, we evaluate the degree of
he packet reorder of DeFlow with RPS and LetFlow, which randomly
pray packets and flowlets, respectively. Meanwhile, we measure the
ueue lengths of specific switch ports to gauge the effectiveness that
ach scheme manages congestion avoidance and mitigation. As shown
n Fig. 6, we select the four ports of the first leaf switch and the last

two aggregation switches for the Spine-Leaf and Fat-Tree network, re-
spectively, which handle all the traffic sent from the eight downstream
servers. Furthermore, we analyze the resource consumption on Tofino
switch to illustrate the hardware cost associated with the different load
balancing schemes.

5.2. Simulation results

5.2.1. Overall FCT
Figs. 8(a)∼13(a) depict the average FCT of all flows in RPS, ECMP,

LetFlow, and DeFlow as the load ratio varies from 50% to 100%, in
which [X, Y, Z] indicates the combination of the workload X, the
topology Y, and the communication pattern Z. As shown in Fig. 8(a),
ECMP is better than RPS in the Spine-Leaf network under the Ring
pattern but performs worse than RPS in the Fat-Tree network with
the All2all pattern (Fig. 11(a)), indicating the limited adaptability of

PS and ECMP. In contrast, DeFlow consistently achieves the smallest
 n

9
overall FCT among all the schemes under all the combinations. At 90%
load in Fig. 10, DeFlow reduces the overall FCT of RPS, ECMP and
LetFlow by 1.56×, 1.41×, and 1.35×, respectively. Note that DeFlow
prioritizes small flows over larger flows on FCT reduction when the
congestion occurs. Even though, the above results demonstrate that
DeFlow still decreases the overall FCT.

While RPS, ECMP and LetFlow achieve a good balance among differ-
ent paths in terms of the number of packets, flows and flowlets, they
o not take into consideration the significant size disparity between
arge and small flows and their performance preference. Moreover, they
re oblivious to the path congestion status. DeFlow achieves superior
erformance through differential treatments to flowlets of small flows
nd large flows. It utilizes the FDA algorithm to identify whether
ach flowlet belongs to large flows or small flows, and employs the
SA algorithm to adopt different path-scheduling strategies for large
nd small flows based on the network state. Specifically, (1) When
ongestion occurs on a specific path, DeFlow swiftly redirects large
lows on it to an alternative path, aiming for a rapid resolution of the
ongestion on this path. (2) If a small flow does not meet the flowlet
witching threshold, DeFlow always keeps it on the original path to
revent packet reordering, irrespective of the path’s state; otherwise,

DeFlow will choose the less congested path for it to lower its FCT
without causing packet reordering.

5.2.2. FCT of large flows
Figs. 8(b)∼13(b) shows the average FCT of large flows. It is evident

hat, although DeFlow always moves large flows away from congested
aths to ensure better FCT for small flows, the FCT of large flows
n DeFlow still outperforms RPS, ECMP, and DeFlow in all six sce-
arios. As shown in Fig. 13(b), the FCT of large flows in DeFlow is

Y. Wan et al.

a
c

2

Computer Networks 257 (2025) 110980
Fig. 10. The FCT and throughput across different load ratios on [DM,Spine-Leaf,Ring].
Fig. 11. The FCT and throughput across different load ratios on [WS,Fat-Tree,All2all].
Fig. 12. The FCT and throughput across different load ratios on [RPC,Fat-Tree,All2all].
Fig. 13. The FCT and throughput across different load ratios on [DM,Fat-Tree,All2all].
m
r
i
L

C
f
a
m
w
a
c
t

just 398.6 ms on the Fat-Tree network and All2all pattern, whereas
RPS, ECMP, and LetFlow require 513.8 ms, 541.2 ms, and 476.6 ms,
respectively. As shown in Fig. 2(c), the packet intervals of large flows
re significantly shorter than that of small flows. Consequently, RPS
auses severe packet reordering in large flows, which triggers frequent

rate reductions and ultimately leads to much longer FCT for large flows.
On the other hand, the very short packet intervals of large flows make it
difficult for LetFlow to identify suitable opportunities to split flow into
flowlets. Even during link congestion, LetFlow can only wait for proper
chances to perform flowlet segmentation. As for ECMP, it does not take
flow size into account when scheduling paths, making it likely for large
flows to be assigned to the same path which leads to congestion when
the combined traffic exceeds its capacity.

5.2.3. FCT of small flows
Figs. 8(c)∼13(c) show the average FCT of small flows. It is ev-

ident that, across all six scenarios, the FCT of small flows of RPS
and DeFlow is significantly lower than that of ECMP and LetFlow.
As shown in Fig. 11(c), DeFlow improves the FCT of small flows by
.76× and 2.16× than ECMP and LetFlow at 90% load, respectively. As
 s

10
revealed in Fig. 2(c), the packet intervals for small flows are quite large,
eaning that randomly spraying packets across load-balanced paths

arely causes reordering. Therefore, RPS has a significant advantage
n reducing FCT of small flows than ECMP and LetFlow. Note that
etFlow and DeFlow may encounter congestion due to difficulties in

finding opportunities for flowlet segmentation. However, DeFlow ad-
dresses the issue by swiftly redirecting large flows during congestion to
high-bandwidth paths, which effectively alleviates congestion without
causing packet reordering for the numerous small flows.

5.2.4. Throughput of large flows
Figs. 8(d)∼13(d) illustrate the average throughput of large flows.

learly, as the load ratio increases, the throughput of large flows
or all schemes drops significantly. Despite this, DeFlow consistently
chieves the highest throughput for large flow across all six scenarios,
aintaining a throughput of 4466 Mbps at 90% load in Fig. 12(d),
hile RPS, ECMP, and LetFlow achieve only 3471 Mbps, 2846 Mbps,
nd 3882 Mbps, respectively. The poor performance of RPS and ECMP
an be attributed to packet reordering and large-flow collision, respec-
ively. On the other hand, DeFlow’s superiority over LetFlow demon-
trates that proactively relocating large flows from congested links is

Y. Wan et al.

m

m

c
l

m
D
t
q

Computer Networks 257 (2025) 110980
Fig. 14. The statistics of queue length of four ports marked in Figs. 6(a) and 6(b).
o

F
t

more beneficial for throughput, even if it causes occasional packet
reordering.

5.2.5. Queue length of switch
To further investigate the reasons behind DeFlow’s superior perfor-

ance, we monitor four switch ports (𝑄1∼𝑄4) marked in Figs. 6(a)
and 6(b) and record their queue lengths in kilobytes (KB) every 100

icroseconds. Figs. 14(a)∼(d) and 14(b)∼(h) illustrate the queue length
statistics of different load balancing schemes at 80% load in the Spine-
Leaf and Fat-Tree networks, respectively. Two aspects of queue length
are crucial: the severity of queue congestion (i.e., the maximum value)
and the duration of congestion (i.e., the average value), which reflect
the capabilities of congestion avoidance and congestion mitigation,
respectively. In RPS, congestion is mild and short-lived, with maxi-
mum queue lengths below 6 KB, as shown in Figs. 14(a) and 14(b).
In contrast, ECMP and LetFlow experience significantly more severe
ongestion, with queue lengths peaking at 100 KB and persisting for
onger duration. Once congestion occurs, ECMP relies on packet drops

caused by queue overflows to trigger sender-side rate reduction, while
LetFlow waits for flowlet timeouts to schedule traffic off the congested
paths. DeFlow outperforms the others in both congestion severity and

itigation. By quickly shifting large flows away from congested paths,
eFlow is able to relieve congestion more effectively. For example, for

he four ports [𝑄1, 𝑄2, 𝑄3, 𝑄4] shown in Fig. 14(g), DeFlow’s average
ueue length (KB) is [1.34, 1.61, 0.89, 0.70], with congestion duration
11
exceeding 30 KB occurring [1.33, 0.60, 1.13, 0.66] of the time (%),
compared to [0.53, 32.0, 6.7, 0.66] and [0.35, 34.5, 7.73, 0.83] for
ECMP, and [1.59, 0.87, 15.7, 0.62] and [1.87, 0.88, 11.5, 0.62] for
LetFlow.

5.2.6. FCT on asymmetric topology
We tested the performance of different load balancing schemes in

asymmetric network topologies by creating two link failures shown in
Fig. 6(a), and the results are shown in Fig. 15. It can be observed that,
under the same conditions, the FCT of each load balancing scheme in an
asymmetric network is longer than that in a symmetric network shown
in Fig. 10, demonstrating the advantage of network symmetry. On the
ther hand, DeFlow demonstrates superior performance compared to

RPS, ECMP and LetFlow. When the load ratio is 80%, it improves the
CT of all flows by about 1.23×, 1.14× and 1.03×, and improves the
hroughput of large flows by 1.40×, 1.16× and 1.13×, respectively,

compared to RPS, ECMP and LetFlow. This once again fully demon-
strates that the sacrifice of FCT of large flows made by DeFlow is minor
and worthwhile. The results indicate that, under both symmetric and
asymmetric networks, DeFlow outperforms RPS, ECMP and LetFlow.

5.2.7. Packet reorder degree
Fig. 16 provides the statistics on the packet reordering degree at

the receiver for three spraying-based load balancing schemes, RPS, Let-
Flow, and DeFlow, under the 80% load in the Spine-Leaf and Fat-Tree

Y. Wan et al. Computer Networks 257 (2025) 110980
Fig. 15. The FCT and throughput on asymmetric network with DM workload.
Fig. 16. The reorder degree statistics of different load balancing schemes at 80% load.
networks. A received packet with the sequence number 𝑖 is consid-
ered as reordered if the maximum sequence number of the previously
received packets of the same flow is 𝑗 and 𝑖 < 𝑗. The reordering
degree (i.e., distance) is calculated as 𝑗−𝑖

𝑠 where 𝑠 is the packet size.
Clearly, RPS results in a high likelihood of shallow reordering, where
packets are frequently delivered slightly out of order. As illustrated in
Figs. 16(a) and 16(b), the proportion of packets in RPS with a reorder-
ing degree of fewer than five is 6.5% in the Spine-Leaf network and
5.94% in the Fat-Tree network. LetFlow maintains sufficient gaps (100
us) between adjacent flowlets when spraying flowlets to accommodate
latency differences across paths. Therefore, LetFlow experiences less
packet reordering than RPS and DeFlow. DeFlow also has a low proba-
bility of packet reordering, with only 0.008% in the Spine-Leaf network
and 0.003% in the Fat-Tree network. Note that the reorder degree in
DeFlow is relatively higher. This is because DeFlow moves high-rate
large flows from heavily congested path to uncongested path, which,
although rare, can result in deep reordering. Nonetheless, the earlier
experimental results on FCT, throughput, and queue length indicate
that this trade-off is worthwhile.

5.3. Hardware prototype analysis

Using the network shown in Fig. 6(a) as the application scenario,
we implement prototypes of RPS, ECMP, LetFlow, and DeFlow on a
Tofino-based switch using 374, 374, 457, and 531 lines of P4 code,
respectively.

Table 3 summarizes their hardware resource consumption. For RPS
and ECMP, the destination IP as the key for looking up available
ports, with RPS selecting one randomly and ECMP using a hash of
the five-tuple (source IP, destination IP, source port, destination port,
and protocol), respectively. In contrast, LetFlow and DeFlow use the
five-tuple to identify and record every flowlet and assign it a randomly
selected port. We evaluate the hardware resource consumption under
1024 and 65 536 concurrent flowlets. Note that the resource consump-
tion of RPS and ECMP is independent of the number of flowlets and
depends solely on the number of servers in the network.

As shown in Table 3, all the four load balancing schemes consume
minimal hardware resources. For instance, for the most precious chip
resource SRAM on Tofino chip, even with 65 536 concurrent flowlets,
RPS, ECMP, LetFlow, and DeFlow only consume 0.7%, 0.7%, 3.6%, and
6.8% of the total SRAM resources, respectively. Since DeFlow needs to
record the packet size and interval for each flowlet, it consumes more
SRAM than RPS, ECMP, and LetFlow. Additionally, DeFlow performs
12
Table 3
Comparison of hardware resource consumption.

Resource type 1K flows 65K flows

RPS/ECMP LetFlow Deflow RPS/ECMP LetFlow Deflow

Hash Bits 2.1% 3.0% 3.8% 2.1% 3.0% 3.8%
VLIW instruction 0.5% 1.6% 2.9% 0.5% 1.6% 2.9%
ALU 2.1% 8.3% 14.6% 2.1% 8.3% 14.6%
SRAM 0.7% 1.4% 2.2% 0.7% 3.6% 6.8%
Gateway 0.5% 2.1% 4.7% 0.5% 2.1% 4.7%
Match crossbar 1.5% 2.5% 3.7% 1.5% 2.5% 3.7%

multiple comparisons based on packet size and interval to decide
whether to change the egress port, therefore it consumes 12.5% and
6.3% more ALU resources than RPS/ECMP and LetFlow, respectively.
In summary, RPS, ECMP, LetFlow, and DeFlow can be fully deployed
on programmable switches and consume very little hardware resources,
leaving ample resources for other essential switch functions such as
firewalls and traffic monitoring.

6. Conclusion

We propose a new flowlet-based load-balancing algorithm DeFlow
for datacenter networks. Unlike the previous solutions, DeFlow distin-
guishes large and small flows based on the realtime statistics on packet
size and adjacent-packet interval, and adopts differential strategies
for both types of flows which prioritize the transmission of small
flows to meet their low latency requirement. Extensive experiments
demonstrate that DeFlow improves the flow completion time of all and
small flows by up to 1.56× and 2.76× respectively while improving
the throughput of large flows by 1.57×. We implement DeFlow on
programmable switches at low cost and demonstrate its outstanding
performance gain over the other state-of-the-art schemes.

CRediT authorship contribution statement

Ying Wan: Writing – original draft, Methodology, Investigation,
Funding acquisition, Formal analysis, Data curation, Conceptualiza-
tion. Haoyu Song: Writing – review & editing, Project administration,
Conceptualization. Yu Jia: Resources, Funding acquisition. Yi Wang:
Writing – review & editing, Validation, Investigation. Ling Qian: Super-
vision, Resources. Tian Pan: Writing – review & editing, Supervision,
Project administration, Conceptualization.

Y. Wan et al.

c
i

t
F

Computer Networks 257 (2025) 110980
Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

Acknowledgments

The work of Ying Wan and Ling Qian was supported by the Na-
tional Nature Science Foundation of China under Grant U21B2022, and
he work of Tian Pan was supported by the National Nature Science
oundation of China under Grant 62372053.

Data availability

Data will be made available on request.

References

[1] M. Salimian, M. Ghobaei-Arani, A. Shahidinejad, An evolutionary multi-objective
optimization technique to deploy the IoT services in fog-enabled networks: an
autonomous approach, Appl. Artif. Intell. 36 (1) (2022) 2008149.

[2] A. Montazerolghaem, Efficient resource allocation for multimedia streaming in
software-defined internet of vehicles, IEEE Trans. Intell. Transp. Syst. (2023).

[3] M. Al-Fares, A. Loukissas, A. Vahdat, A scalable, commodity datacenter network
architecture, CCR (2008).

[4] M. Alizadeh, T. Edsall, On the data path performance of leaf-spine datacenter
fabrics, in: HOTI, 2013, pp. 71–74.

[5] A. Greenberg, et al., VL2: A scalable and flexible data center network, in:
SIGCOMM, 2009, pp. 51–62.

[6] H. Jiang, C. Dovrolis, Why is the internet traffic bursty in short time scales? in:
SIGMETRICS, 2005, pp. 241–252.

[7] G.Y. Lazarou, J. Baca, V.S. Frost, J.B. Evans, Describing network traffic using
the index of variability, TON (2009).

[8] S. Liu, X. Lin, Z. Guo, Y. Wang, M.A. Serhani, Y. Xu, Optimizing flow completion
time via adaptive buffer management in data center networks, in: ICPP, 2021,
pp. 1–10.

[9] R. Durner, W. Kellerer, Network function offloading through classification of
elephant flows, TNSM (2020).

[10] C. Hopps, Analysis of an equal-cost multi-path algorithm, in: RFC 2992,
2000, http://dx.doi.org/10.17487/RFC2992, URL https://www.rfc-editor.org/
info/rfc2992.

[11] F. Jazayeri, A. Shahidinejad, M. Ghobaei-Arani, A latency-aware and energy-
efficient computation offloading in mobile fog computing: a hidden Markov
model-based approach, J. Supercomput. 77 (2021) 4887–4916.

[12] A. Shahidinejad, F. Farahbakhsh, M. Ghobaei-Arani, M.H. Malik, T. Anwar,
Context-aware multi-user offloading in mobile edge computing: a federated
learning-based approach, J. Grid Comput. 19 (2) (2021) 18.

[13] S. Ghorbani, et al., Drill: Micro load balancing for low-latency data center
networks, in: SIGCOMM, 2017, pp. 225–238.

[14] M. Alizadeh, A. Greenberg, D.A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S.
Sengupta, M. Sridharan, Data center tcp (DCTCP), in: SIGCOMM, 2010, pp.
63–74.

[15] A. Dixit, et al., On the impact of packet spraying in data center networks, in:
INFOCOM, IEEE, 2013, pp. 2130–2138.

[16] L. Giraudo, R. Birke, A. Bianco, S. Atalla, et al., A load balancer for a multi-stage
router architecture, IJCA (2014).

[17] K. He, et al., Presto: Edge-based load balancing for fast datacenter networks,
CCR (2015).

[18] E. Vanini, et al., Let it flow: Resilient asymmetric load balancing with flowlet
switching, in: NSDI, 2017, pp. 407–420.

[19] C.K. Song, H. Song, C. Qian, Dynamic and load-aware flowlet for load-balancing
in data center networks, IPCCC (2023).

[20] Cisco, Congestion-awarw packet spraying, 2023.
[21] Broadcom, Broadcom unveils industry’s highest performance fabric for AI

networks, 2023, https://www.broadcom.com/company/news/product-releases/
61156.

[22] UEC, UEC progresses towards v1.0 set of specifications, 2024, https://
ultraethernet.org/uec-progresses-towards-v1-0-set-of-specifications/.

[23] W. Wang, et al., Freeway: Adaptively isolating the elephant and mice flows on
different transmission paths, in: ICNP, IEEE, 2014, pp. 362–367.

[24] A.R. Curtis, W. Kim, P. Yalagandula, Mahout: Low-overhead datacenter traffic
management using end-host-based elephant detection, in: INFOCOM, 2011, pp.
1629–1637.
13
[25] R. Tu, X. Wang, J. Zhao, Y. Yang, L. Shi, T. Wolf, Design of a load-balancing
middlebox based on SDN for data centers, in: INFOCOM WKSHPS, 2015, pp.
480–485.

[26] Z. Guo, M. Su, Y. Xu, Z. Duan, L. Wang, S. Hui, H.J. Chao, Improving
the performance of load balancing in software-defined networks through load
variance-based synchronization, Comput. Netw. (2014).

[27] Z. Guo, S. Hui, Y. Xu, H.J. Chao, Dynamic flow scheduling for power-efficient
data center networks, in: IWQoS, 2016, pp. 1–10.

[28] Z. Guo, Y. Xu, Y.-F. Liu, S. Liu, H.J. Chao, Z.-L. Zhang, Y. Xia, AggreFlow:
Achieving power efficiency, load balancing, and quality of service in data center
networks, TON (2020).

[29] J. Zhang, F.R. Yu, S. Wang, T. Huang, Z. Liu, Y. Liu, Load balancing in data
center networks: A survey, COMST (2018).

[30] A. Kabbani, B. Vamanan, J. Hasan, F. Duchene, Flowbender: Flow-level adap-
tive routing for improved latency and throughput in datacenter networks, in:
CoNEXT, 2014, pp. 149–160.

[31] N. Katta, A. Ghag, M. Hira, I. Keslassy, A. Bergman, C. Kim, J. Rexford, Clove:
Congestion-aware load balancing at the virtual edge, in: CoNEXT, 2017, pp.
323–335.

[32] M.A. Qureshi, et al., PLB: Congestion signals are simple and effective for network
load balancing, in: SIGCOMM, 2022, pp. 207–218.

[33] Y. Zhu, et al., Congestion control for large-scale RDMA deployments, CCR (2015).
[34] R. Mittal, et al., TIMELY: RTT-based congestion control for the datacenter, CCR

(2015).
[35] P. Goyal, P. Shah, N.K. Sharma, M. Alizadeh, T.E. Anderson, Backpressure flow

control, in: BC, 2019, pp. 1–3.
[36] T.R. Henderson, et al., Network simulations with the NS-3 simulator, SIGCOMM

Demonstr. (2008).
[37] The CAIDA UCSD anonymized internet traces[20180315], 2018, www.caida.org/

data/passive/passive_dataset.xml. (Accessed March 2018).
[38] H. Wang, W. Ding, Z. Xia, A cloud-pattern based network traffic analysis platform

for passive measurement, in: CSC, 2012, pp. 1–7.
[39] W. mao, et al., Facilitating network functions virtualization by exploring locality

in network traffic: A proposal, in: CSAI, 2018, pp. 495–499.
[40] B. Yan, Y. Xu, H. Xing, K. Xi, H.J. Chao, Cab: A reactive wildcard rule caching

system for software-defined networks, in: HotSDN, 2014, pp. 163–168.
[41] J. Wallerich, A. Feldmann, Capturing the variability of internet flows across time,

in: INFOCOM, 2006, pp. 1–6.
[42] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh, A. Vahdat,

WCMP: Weighted cost multipathing for improved fairness in data centers, in:
EuroSys, 2014, pp. 1–14.

[43] C.-M. Cheung, K.-C. Leung, DFFR: a flow-based approach for distributed load
balancing in data center networks, Comput. Commun. 116 (2018) 1–8.

[44] S. Kandula, D. Katabi, S. Sinha, A. Berger, Dynamic load balancing without
packet reordering, CCR (2007).

[45] S. Sen, D. Shue, S. Ihm, M.J. Freedman, Scalable, optimal flow routing in
datacenters via local link balancing, in: CoNEXT, 2013, pp. 151–162.

[46] Z. Liu, et al., Burstbalancer: Do less, better balance for large-scale data center
traffic, TPDS (2023).

[47] M. Alizadeh, et al., CONGA: Distributed congestion-aware load balancing for
datacenters, in: SIGCOMM, 2014, pp. 503–514.

[48] N. Katta, M. Hira, C. Kim, A. Sivaraman, J. Rexford, Hula: Scalable load
balancing using programmable data planes, in: SOSR, 2016, pp. 1–12.

[49] J. Wang, S. Rao, Y. Liu, P.K. Sharma, J. Hu, Load balancing for heterogeneous
traffic in datacenter networks, J. Netw. Comput. Appl. 217 (2023) 103692.

[50] Y. Lu, Z. Xu, X. Ma, FAMG: A flow-aware and mixed granularity method for
load-balancing in data center networks, Comput. Commun. 209 (2023) 415–428.

[51] J. Zhang, W. Liu, C. Zheng, Z. Guo, Load balancing based on flow classification
with private link in programmable switch, in: 2024 9th International Conference
on Computer and Communication Systems, ICCCS, IEEE, 2024, pp. 646–651.

[52] J. Hu, C. Zeng, Z. Wang, J. Zhang, K. Guo, H. Xu, J. Huang, K. Chen, Load
balancing with multi-level signals for lossless datacenter networks, IEEE/ACM
Trans. Netw. (2024).

[53] M. Al-Fares, et al., Hedera: dynamic flow scheduling for data center networks,
in: NSDI, 2010, pp. 89–92.

[54] S. Wang, J. Zhang, T. Huang, T. Pan, J. Liu, Y. Liu, FDALB: Flow distribution
aware load balancing for datacenter networks, in: IWQoS, 2016, pp. 1–2.

[55] J. Perry, et al., Fastpass: A centralized "zero-queue" datacenter network, in:
SIGCOMM, 2014, pp. 307–318.

[56] F. Carpio, A. Engelmann, A. Jukan, DiffFlow: Differentiating short and long flows
for load balancing in data center networks, in: 2016 IEEE Global Communications
Conference, GLOBECOM, IEEE, 2016, pp. 1–6.

[57] S. Imanpour, M. Kazemiesfeh, A. Montazerolghaem, Multi-level threshold SDN
controller dynamic load balancing, in: 2024 8th International Conference on
Smart Cities, Internet of Things and Applications (SCIoT), IEEE, 2024, pp. 88–93.

[58] C. Raiciu, C. Pluntke, S. Barre, A. Greenhalgh, D. Wischik, M. Handley,
Data center networking with multipath TCP, in: Proceedings of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks, 2010, pp. 1–6.

[59] The network simulator-NS-2, 2009, https://www.isi.edu/websites/nsnam/ns/.
(Accessed September 2024).

http://refhub.elsevier.com/S1389-1286(24)00812-0/sb1
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb1
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb1
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb1
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb1
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb2
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb2
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb2
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb3
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb3
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb3
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb4
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb4
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb4
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb5
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb5
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb5
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb6
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb6
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb6
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb7
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb7
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb7
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb8
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb8
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb8
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb8
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb8
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb9
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb9
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb9
http://dx.doi.org/10.17487/RFC2992
https://www.rfc-editor.org/info/rfc2992
https://www.rfc-editor.org/info/rfc2992
https://www.rfc-editor.org/info/rfc2992
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb11
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb11
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb11
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb11
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb11
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb12
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb12
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb12
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb12
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb12
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb13
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb13
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb13
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb14
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb14
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb14
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb14
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb14
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb15
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb15
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb15
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb16
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb16
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb16
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb17
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb17
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb17
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb18
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb18
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb18
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb19
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb19
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb19
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb20
https://www.broadcom.com/company/news/product-releases/61156
https://www.broadcom.com/company/news/product-releases/61156
https://www.broadcom.com/company/news/product-releases/61156
https://ultraethernet.org/uec-progresses-towards-v1-0-set-of-specifications/
https://ultraethernet.org/uec-progresses-towards-v1-0-set-of-specifications/
https://ultraethernet.org/uec-progresses-towards-v1-0-set-of-specifications/
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb23
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb23
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb23
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb24
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb24
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb24
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb24
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb24
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb25
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb25
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb25
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb25
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb25
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb26
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb26
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb26
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb26
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb26
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb27
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb27
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb27
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb28
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb28
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb28
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb28
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb28
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb29
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb29
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb29
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb30
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb30
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb30
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb30
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb30
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb31
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb31
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb31
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb31
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb31
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb32
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb32
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb32
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb33
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb34
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb34
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb34
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb35
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb35
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb35
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb36
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb36
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb36
http://www.caida.org/data/passive/passive_dataset.xml
http://www.caida.org/data/passive/passive_dataset.xml
http://www.caida.org/data/passive/passive_dataset.xml
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb38
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb38
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb38
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb39
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb39
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb39
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb40
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb40
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb40
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb41
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb41
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb41
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb42
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb42
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb42
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb42
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb42
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb43
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb43
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb43
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb44
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb44
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb44
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb45
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb45
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb45
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb46
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb46
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb46
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb47
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb47
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb47
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb48
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb48
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb48
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb49
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb49
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb49
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb50
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb50
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb50
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb51
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb51
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb51
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb51
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb51
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb52
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb52
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb52
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb52
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb52
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb53
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb53
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb53
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb54
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb54
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb54
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb55
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb55
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb55
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb56
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb56
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb56
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb56
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb56
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb57
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb57
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb57
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb57
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb57
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb58
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb58
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb58
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb58
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb58
https://www.isi.edu/websites/nsnam/ns/

Y. Wan et al. Computer Networks 257 (2025) 110980
[60] A. Varga, The omnet++ discrete event simulation system, in: Proc. of the
European Simulation Multiconference, ESM’2001, 2001, pp. 1–7.

[61] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross, A.
Wang, J. Stringer, P. Shelar, et al., The design and implementation of open
vswitch, in: NSDI, 2015, pp. 117–130.

[62] S. Imanpour, A. Montazerolghaem, S. Afshari, Load balancing of servers in
software-defined internet of multimedia things using the long short-term memory
prediction algorithm, in: 2024 10th International Conference on Web Research,
ICWR, IEEE, 2024, pp. 291–296.

[63] A.H. Alhilali, A. Montazerolghaem, Artificial intelligence based load balancing
in SDN: A comprehensive survey, Internet Things 22 (2023) 100814.

[64] EdgeCore wedge 100BF-32X series switches, 2024, [Online]. Available:
https://www.epsglobal.com/products/switches/data-center-switches/100g-data-
center-switches/dcs800-32x-100g-qsfp28-data-center-switch. (Accessed March
2024).

[65] H. Zhang, J. Zhang, W. Bai, K. Chen, Mosharaf, Resilient datacenter load
balancing in the wild, in: SIGCOMM, 2017, pp. 253–266.

[66] LetFlow on github, 2024, https://github.com/BurstBalancer. (Accessed March
2024).

[67] P. Gill, N. Jain, N. Nagappan, Understanding network failures in data centers:
measurement, analysis, and implications, in: SIGCOMM, 2011, pp. 350–361.

[68] B. Montazeri, et al., Homa: A receiver-driven low-latency transport protocol using
network priorities, in: SIGCOMM, 2018, pp. 221–235.

Ying Wan received the B.S. degree in communication engi-
neering from Northwestern Polytechnical University in 2016
and the Ph.D. degree in computer science and technology
from Tsinghua University, China, in 2022. He is currently
a Senior Network Technology researcher with China Mo-
bile (Suzhou) Software Technology. His research interests
include bloom filter design, high performance network al-
gorithm, software defined networking and multipath load
balancing in datacenter networks.

Haoyu Song received the BE degree in electronics engi-
neering from Tsinghua University, in 1997, and the MS
and DSc degrees in computer engineering from Washington
University in St. Louis in 2003 and 2006, respectively.
He is a senior principal network architect with Futurewei
Technologies, USA. His research interests include software
defined network, network virtualization and cloud comput-
ing, high performance networked systems, algorithms for
network packet processing and intrusion detection. He is
a senior member of the IEEE.
14
Yu Jia received the BE degree in Sichuan University in
2012. He is a senior principal network architect with China
Mobile (Suzhou) Software Technology Co., Ltd, China. His
research interests include Future Network Architectures,
Software-defined Networks, and Quantum Computing.

Yi Wang is a Research Associate Professor in the Sustech
Institute of Future Networks, Southern University of Science
and Technology. He received the PhD degree in Com-
puter Science and Technology from Tsinghua University in
July 2013. His research interests include Future Network
Architectures, Information Centric Networking, Software-
defined Networks, and the design and implementation of
high-performance network devices.

Ling Qian received the BE, MS and DSc degree in computer
science and technology from Tsinghua University, in 1995,
1997 and 2001, respectively. He is a chief scientist with
China Mobile (Suzhou) Software Technology Co., Ltd, China.
His research interests include Software Engineering, Cloud
Computing, Big Data, and Quantum Computing.

Tian Pan received the Ph.D. degree from the Department
of Computer Science and Technology, Tsinghua Univer-
sity, in 2015. He is currently an associate professor with
Beijing University of Posts and Telecommunications. His pri-
mary research interests include cloud data center networks,
programmable data plane, and satellite networks.

http://refhub.elsevier.com/S1389-1286(24)00812-0/sb60
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb60
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb60
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb61
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb61
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb61
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb61
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb61
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb62
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb62
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb62
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb62
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb62
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb62
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb62
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb63
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb63
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb63
https://www.epsglobal.com/products/switches/data-center-switches/100g-data-center-switches/dcs800-32x-100g-qsfp28-data-center-switch
https://www.epsglobal.com/products/switches/data-center-switches/100g-data-center-switches/dcs800-32x-100g-qsfp28-data-center-switch
https://www.epsglobal.com/products/switches/data-center-switches/100g-data-center-switches/dcs800-32x-100g-qsfp28-data-center-switch
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb65
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb65
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb65
https://github.com/BurstBalancer
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb67
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb67
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb67
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb68
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb68
http://refhub.elsevier.com/S1389-1286(24)00812-0/sb68

	DeFlow: Differential flowlet switching for load balancing in datacenter networks
	Introduction
	Background
	Traffic Locality
	Flowlet Switching
	Flow Differentiation

	Related Work
	Switch Based Solutions
	Controller Based Solutions
	Endhost Based Solutions

	Algorithm Description and Implementation
	Flowlet Differentiation Algorithm
	Flowlet Switching Algorithm
	Implementation
	Analysis

	Implementation and Evaluation
	Testbed
	Topologies
	Workloads
	Communication Patterns
	Parameters
	Metrics

	Simulation Results
	Overall FCT
	FCT of Large Flows
	FCT of Small Flows
	Throughput of Large Flows
	Queue Length of Switch
	FCT on Asymmetric Topology
	Packet Reorder Degree

	Hardware Prototype Analysis

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

