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Abstract—Service function chaining (SFC) enhances network
efficiency and agility by enabling the orchestration of network
functions (NFs) in a customized manner. In public cloud environ-
ments, SFC is implemented via sequential packet routing through
a series of NFs, each hosted on an x86 server pool. However, such
server pooling-based SFC provisioning is not easily deployable
in the edge cloud due to constraints related to hardware budget
and deployment footprints. In the edge cloud, hyper-converged
infrastructure (e.g., switch servers) offers a promising solution for
cost and footprint reduction. Typically, a hyper-converged switch
server comprises a programmable switch and a CPU, allowing
NFs to be hosted on the CPU with packet routes controlled
by the switch. To enhance performance, forwarding tables of
NFs can be further offloaded to the switch. However, due to the
limited on-chip memories of the switch, NFs with intensive states
cannot be fully offloaded. To address this, we propose busy submit
via packet circulation between the switch and CPU. While busy
submit ensures packets experiencing table search misses in the
switch are routed to the full tables in the CPU, it may lead to
repeated circulations in the context of SFC processing, increasing
both packet latency and CPU load. To mitigate this, we introduce
lazy submit, reducing packet circulation overhead by postponing
packet submission to the CPU until the end of the pipeline.
Additionally, we use 2D Bloom filters to cache NF dependencies,
reducing unnecessary circulations. The evaluation of an NF chain
with 10 NFs shows that busy submit enables state-intensive SFC,
while lazy submit reduces overall latency by 60%.

I. INTRODUCTION

Service function chaining (SFC) [1] provides a flexible

way for network operators to define and manage the flow

of traffic through a series of network functions (NFs) such

as firewalls (FWs), load balancers (LBs), network address

translations (NATs), allowing for efficient and customizable

network service delivery. In public clouds, which have rich

computing resources (e.g., servers) shared by a massive num-

ber of tenants, the SFC is usually implemented via sequential

routing of tenants’ packets through a series of NFs, each of

which is hosted in a scalable x86 server pool (as shown in

Fig. 1a). Specifically, different tenants can specify different
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Fig. 1: Two approaches to implementing SFC in public cloud

and edge cloud scenarios with different resource availabilities.

SFCs with different packet routes through NF resource pools.

The packet routes are determined by the forwarding rules in

SDN switches installed by the controller. Even if the packet

routes are different, two SFCs may still share the same path

segment at the same resource pool which increases utilization.

When traffic demand grows, the NF resource pool can easily

be scaled out to handle peak traffic load by adding more server

nodes [2]. With abundant server resources in data centers, the

server pooling-based SFC provisioning runs well in public

clouds. However, its deployment for edge clouds is not easily

feasible due to the strict constraints of hardware budget and

deployment footprints at the edge. First, as edge clouds are

placed near the end-users, they will have a larger site number

compared to public clouds. Therefore, the cost efficiency of

each edge cloud must be considered and the server pooling

for SFC appears quite expensive. Second, edge clouds usu-

ally have small footprints but full functionalities (including

compute, storage, network, power supply, cooling system)

for ease of deployment in anywhere near the customers. For

example, AWS’s edge cloud infrastructure is delivered as an

industry-standard 42U rack [3]. If the network functionalities

(e.g., SFC) occupy too much rack space, the server payload

for hosting tenant VMs will have to be compacted, which

will reduce the total VM capacity as well as the cloud

vendor’s revenue. Overall, at the edge, we need a “high-

density” implementation of SFC at affordable costs.

Fortunately, with the rise of edge computing demands, in

the server market of 2023, we find such a device with, (1)

small deployment footprints (e.g., 2U), (2) affordable costs

(price of a switch plus a server), and (3) both functions of
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computing and networking, which is very suitable for SFC

deployment in edge cloud. The device is a hyper-converged
switch server (sometimes also called server switch) [4] which

contains a programmable switch (i.e., P4 switch) [5, 6] and a

powerful x86 multi-core CPU, typically used for implementing

cloud gateways and load balancers [7–9]. As the switch server

has the full functions of computing and networking, the

server pooling-based SFC architecture in public cloud can be

migrated into the 2U box with the NFs implemented in multi-

cores of the CPU and the packet routing controlled by the

programmable switch as shown in Fig. 1b. At the edge, to

handle the peak traffic load from major cloud customers with

limited computing resources within the 2U box, we propose

HyperSFC dedicated to SFC deployment for edge cloud based

on the hyper-converged switch server, and consider fully

leveraging the high performance and programmability of the

P4 switch to maximally offload NFs to the data plane to lessen

the CPU’s burden. Specifically, the SFC can be implemented

along the switch pipeline with multiple NF forwarding tables

installed into the sequential pipeline stages.

However, such a design still faces several challenges. First,

the P4 switch actually has very limited on-chip SRAM and

TCAM [10] to hold the full tables of state-intensive NFs (e.g.,
LB) [11]. To this end, we have to cache the active NF table

entries in the switch while its full table still needs to be

stored on the CPU. Note that we opt for cache-based table

partitioning rather than assigning different NFs to the switch

or CPU based on their table sizes [12] to fully leverage traffic

locality to maximize forwarding performance and reduce CPU

overhead. Following this design, we propose busy submit with

packet circulation between the switch and CPU triggered on

each table search miss at the fast path. Specifically, the busy

submit needs to address (1) when a table search miss occurs,

how to route the packet to the correct full table instance on

the CPU, and (2) how to make efficient table bypass along

the switch pipeline when the table search miss occurs and

when the packet re-enters the switch after completing the full

table search on the CPU. We add customized metadata to the

packet header and create novel pipeline bypass logic to satisfy

the above needs. Second, although busy submit can always

route packets with table search misses in the switch to hit

the full tables in the CPU, packets may experience repeated

circulations when multiple table search misses occur during

SFC processing, which will increase both packet processing

latency and CPU overload. To this end, we propose lazy
submit to reduce the packet circulation times and overhead

by postponing the packet submission to the CPU until the end

of the switch pipeline, and processing the full table search

requests in parallel on the CPU. Moreover, we leverage 2D

Bloom filters as the table search dependency encoder and table

branch selector to handle the performance issue of lazy submit

with SFC branches. Specifically, 2D Bloom filters are used

to cache NF dependencies in the fast path, thereby reducing

unnecessary packet circulations to the CPU for querying the

SFC branch results. False positive handling of 2D Bloom

filters is also discussed. With the step-by-step design of busy

submit and lazy submit, HyperSFC becomes efficient and

robust, promising for SFC deployment in the real world.

Our major contributions are summarized as follows:

• We propose HyperSFC, a novel SFC architecture based

on hyper-converged switch servers for high-performance,

cost-effective and small-footprint edge cloud deployment.

• To address the limited memory issue of the P4 switch for

holding state-intensive NFs, we employ cache-based NF

table partitioning and propose busy submit. This enables

efficient packet circulation between the switch and CPU,

triggered by table search misses in the switch pipeline.

• To address the repeated circulations due to multiple table

search misses along the pipeline, we propose lazy submit

to reduce the packet circulation overhead by postponing

the packet submission to the CPU until the end of the

SFC. Besides, we use 2D Bloom filters for fast SFC table

dependency resolution when conducting lazy submit.

• We implement HyperSFC with the P4 switch software

and Redis database, and the code is available on our git

repository [13]. Our evaluation of an NF chain with 10

NFs shows that busy submit realizes state-intensive SFC

efficiently with the CPU utilization below 3%, while lazy

submit reduces the overall latency of busy submit by 60%.

II. BACKGROUND AND MOTIVATION

Fig. 2: The evolution of hyper-converged switch server [4].

Hyper-converged switch server. Fig. 2 depicts the archi-

tecture of Accton CSP-9550 [4], a hyper-converged switch

server, and its evolutionary stages: from the original x86

server, to the smartNIC-accelerated x86 server, to the hyper-

converged switch server. This evolution is fueled by the

growing traffic loads in public and edge clouds, along with

deployment footprint limitations. Actually, the use of pro-

grammable switches [6] for NF acceleration has been success-

fully demonstrated in various application scenarios [10, 14].

The P4 switch has 4 pipelines, and each pipeline has limited

SRAM/TCAM on-chip memories (O(10MB)), distributed in

12 pipeline stages. For stateless NF implementation (e.g., L3

forwarding), the forwarding tables of different NFs can be

sequentially placed in the switch pipeline stages for high-

throughput, low-latency packet processing. However, most

stateful NFs have large memory footprints to maintain per-

flow forwarding rules (e.g., LB, NAT) and the P4 ASIC is
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insufficient to accommodate the full tables of these NFs. The

convergence of the CPU and P4 ASIC within a single box

makes the switch server an excellent choice for implementing

stateful NFs, and the switch pipeline is inherently suitable

for accommodating the SFC. To take full advantage of traffic

locality, we can use the P4 ASIC as the cache of the active

entries, leaving the full tables maintained in the CPU as a

backup. When table search misses occur in the switch, the

packet needs to be routed to the CPU and when it completes

the full table search, it will re-enter the fast path to get

processed by the remaining NFs in the SFC. To implement the

above interaction between the switch and CPU, some ports of

the switch should be connected to the NICs attached to the

CPU in the switch server. Packets must traverse the entire

switch pipeline before being forwarded through the NICs and

reaching the CPU. Upon completing the CPU processing,

packets will be circulated back to the previous input port of the

switch pipeline for remaining NF processing along the SFC.

Challenges of SFC provisioning on switch server. Follow-

ing this hierarchical SFC design based on the switch server

with packet circulation, there remain several challenges that

need to be tackled. The first challenge involves correctly

dispatching packets that encounter table search misses in the

fast path to the corresponding full tables on the CPU, given

the presence of numerous NFs and their associated tables on

the CPU. The second challenge pertains to achieving a fast

response after table search misses within the switch pipeline

and implementing fast checkpoint recovery when packets

circulate back to the pipeline after hitting the full table in

the CPU. Specifically, it is expected that packets encountering

table search misses can bypass the subsequent pipeline stages

to reach the output port directly for fast CPU processing. It is

also expected that when packets are circulated back to the

pipeline, they can bypass the previously traversed pipeline

stages to avoid redundant processing. The third challenge is

about repeated circulation overhead reduction during one-pass

SFC processing, since multiple packet circulations may occur

if table search misses occur in multiple pipeline stages which

will further incur longer packet processing latency and higher

CPU utilization. The fourth challenge involves efficient table

dependency resolution during packet circulation. In some SFC

scenarios, the selection of the next table depends on the search

result of the current table. Such inter-table dependencies may

introduce complexity during packet circulation with or without

the aforementioned optimizations. We provide our solutions to

these challenges in the following sections.

III. HIERARCHICAL SFC PROCESSING WITH PACKET

CIRCULATION BETWEEN P4 ASIC AND CPU

A. Busy Submit Model with Packet Circulations

Full table lookup based on fast-slow path coordination.
To effectively store a significant number of match-action tables

for state-intensive NFs, we retain the full tables in the CPU as

a backup, and cache a subset of these full tables in the switch

pipeline. In case of a table search miss in the switch pipeline,

we ensure proper routing of the packet to the corresponding

full table on the CPU by embedding metadata such as the

table ID and search key into the packet header. The table ID

records the exact table where the search miss occurs, and the

search key carries the original search key for a full table lookup

on the CPU. Upon arrival at the CPU, a key extraction logic

extracts the key from the packet header and searches for it in

the corresponding full table. In our design, we assign the task

of action execution entirely to the switch to maximally lessen

the burden on the CPU. Consequently, on the CPU, the full

table search only returns a 1-bit result of either 1 (found) or

0 (not found), which is then added to the packet header. If

the result is 1, the corresponding table entries will be dumped

into the switch for cache replacement. When the packet is

circulated back to the input port of the switch, if the result

is 0, the default action will be executed (e.g., packet drop);

otherwise, the packet will search the previous table again. If

the installed rule has taken effect, the packet will hit the rule

and proceed to the next stage; otherwise, it will experience

another table search miss and be forwarded to the CPU again.

In our design, the packet does not need to be buffered in the

queue until the table entry is updated from the CPU. Such

a stateless design eliminates the need for deep buffering and

complex buffer management logic in high-speed networks.
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Fig. 3: Packet circulations between P4 ASIC and CPU for

hierarchical SFC processing via the busy submit model.

A detailed example. Fig. 3 shows the packet flow of the

busy submit model. After a packet (blue line) encounters

the first search miss at table i in the pipeline, a header

containing the table ID and search key is inserted into the

original packet. It then proceeds directly to the end of the

pipeline in the local match-action stage and is forwarded to

the CPU. The CPU parses and recognizes that this is the packet

designated for a full table lookup. Based on the parsed table

ID and key, the CPU performs key matching on table i in the

memory database. The lookup result is then encapsulated in

the packet header and subsequently resubmitted to the switch.

Simultaneously, the matched rules will be installed to the data

plane by the controller running at the CPU. When the packet

reaches the parser again (red line), the switch parses the lookup

result and bypasses it to table i according to the table ID.
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As the rules have been updated in the data plane, the packet

can be correctly forwarded at table i. However, in Fig. 3, in

the subsequent stages, it encounters another miss at table j.

Similar to the previous match failure, the packet undergoes

another search on the CPU and successfully proceeds through

the pipeline after the second packet circulation (green line).

B. Table Bypass in the Data Plane

Table bypass before packet submit to CPU and after
packet return. It is essential and beneficial to bypass irrel-

evant tables in the switch pipeline both before the packet is

sent to the CPU and after the packet returns to the switch.

On one hand, bypassing irrelevant match-action stages speeds

up the processing of packets within the pipeline. On the other

hand, certain P4 programs necessitate the sequential execution

of table lookups. Preserving the matching order of the tables

during hierarchical SFC processing ensures the correctness of

the program’s logic. By default, in the switch server, packets

have to traverse the entire pipeline before being sent to the

CPU, even if they encounter table search misses in the middle

of the pipeline. However, continuing to search the tables in the

subsequent stages after a table search miss occurs is neither

necessary nor always correct. Therefore, it is recommended

to terminate the current pipelined searches in advance when

encountering a table miss and directly send the packet to the

CPU for a full table search. The left part of Fig.4 illustrates the

egress table bypass P4 logic we design to perform subsequent

table bypass upon table search misses, before the packet

is submitted to the CPU. Similarly, the right part of Fig.4

illustrates the ingress table bypass logic. When the packet

returns from the CPU and is resubmitted to the pipeline, there

is no need to repeat the search of the previously successfully

searched table. Since we record the table ID of the most recent

failed search in the packet, we can easily complete the table

bypass after the packet returns to the pipeline.

A detailed example. Fig. 4 shows the process of table by-

pass in detail. The parser classifies the normal packet (Protocol

type = IP) and the resubmitted packet (Protocol type = Re-

submit) returned from the CPU according to the Protocol type

identifier. For the normal IP packet, the packet header vector

(PHV) undergoes matching in multiple sequential stages. Upon

finding a match, the PHV executes the corresponding action.

In scenarios where a search miss occurs (e.g., in MAU1), the

switch halts the execution of the predefined actions of the

current stage. Instead, it will add the table ID and search key

into the packet header, and update the identifier to Resubmit

so that the CPU can identify the packet type and perform a

full table lookup. After the identifier is replaced, subsequent

stages can choose to skip their local stage processing based

on the identifier until the end of the pipeline, and finally the

packet is sent to the CPU. After full table searches in the CPU,

the resubmitted packet will return to the switch and undergo

sequential matching of MAUs, skipping those that have been

processed based on the carried table ID, until it reaches the

MAU where the table search miss occurs previously (i.e.,
MAU1 in this example). If the result is a hit (i.e., the rules

have been installed), then execute the corresponding action.

Otherwise, the default action of the P4 program (usually packet

drop) is executed. The current bypass logic for the hierarchical

SFC processing is loosely integrated into the original P4

programs. It can also be easily applied to other P4 programs

that require the similar fast-slow path coordination.
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Fig. 4: Table bypass logic inside P4 ASIC before packet submit

to CPU and after packet return.

C. Rule Caching Strategies
Cache update considering rule dependencies. For exact

match tables, selecting the rules that need to be installed to

the fast path is straightforward; simply choose the exact rules

that are hit in the full table on the CPU. However, for longest

prefix match tables, such as the routing table, the situation

is different due to the prefix dependencies between rules.

Directly selecting the rules hit on the CPU to install may

lead to inconsistency in the lookup results. For example, if

the prefix 10.0.*.* has been hit and updated to the fast path

previously, while a longer prefix like 10.0.0.1 is still on the

CPU. A packet arriving at the fast path with a DIP of 10.0.0.1

will match the 10.0.*.* directly at the fast path, leading to

incorrect forwarding. Because the true longest prefix 10.0.0.1

is on the CPU, and a full table lookup would certainly match

10.0.0.1. Similar issues are also discussed in [15]. To ensure

the correctness of longest prefix matching on the fast path, in

such cases, the rule caching strategy to adopt should update

the rules that are hit along with their dependent longer-prefix

rules to the fast path.
Cache eviction based on rule frequencies. In general, we

can use a frequency-based cache replacement strategy to evict

inactive table entries. To reduce the counter memory usage for

recording entry frequencies within a programmable switch, we

can further utilize succinct data structures such as sketches. It

is worth noting that maintaining consistency in table lookup

results is also necessary during cache eviction. Therefore, for

longest prefix match tables, when evicting a low-frequency

entry, it’s necessary to evict other prefix-dependent entries

along with it. To ensure roughly the same quantity between

the total number of evictions and updates, it’s necessary to

conduct precalculation based on the frequency of entries and

the dependency between entries before each cache eviction.
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D. Limitations of Busy Submit

Although busy submit can always route packets with table

search misses in the switch to hit the full tables in the CPU,

packets may undergo repeated circulations when multiple table

search misses occur during SFC processing. This will lead

to four issues. First, the packet processing latency will be

increased by manyfold. Second, the CPU will be occupied re-

peatedly by the circulated packets. Third, the switch bandwidth

and the southbound interface will be consumed repeatedly by

the circulated packets. Finally, the CPU has to process the

full table search requests one by one. Compared to batch

processing, which utilizes the concurrent capabilities of the

multi-core CPU, this one-by-one processing is very inefficient.

IV. PACKET CIRCULATION REDUCTION WITH LAZY

PACKET SUBMIT

Delayed packet submit until end of fast path pipeline.
If an SFC has a single table search pipeline without any table

search branches, the packet route within the switch will follow

a deterministic path. Consequently, there is no need to upload

the packet each time it encounters a table search miss. Instead,

we can store all the table IDs which experience search misses

and their corresponding search keys along the pipeline and

upload them as a batch at the end of the pipeline. If there are

no table branches, the result will be the same as the per-stage

packet submit model (i.e., the busy submit model). When the

lazily submitted packet returns to the switch with a group of

table search results, we need to parse them into a header stack

in one pass at the switch parser. It is important to note that

when pushing the results into the header stack, they should be

pushed in a reverse order. This ensures that when the packet

begins to traverse the pipeline and perform table searches, the

results popped out will align with the table sequence.

As shown in the left part of Fig. 5, the packet sequentially

incorporates the IDs of the tables not hit during the pipeline

processing (table i, table k) into the packet header. Unlike busy

submit, lazy submit does not execute egress table bypass. After

being resubmitted to the switch, it is parsed into the header

stack. Each element within the stack comprises the table ID

and search result, popping out subsequently during the match

process and facilitating a jump to the corresponding table via

ingress table bypass. The delayed submission on the data plane

reduces the number of packet loops to a minimum of 1.

Concurrent multi-table lookup in the slow path. In the

lazy submit model, when a packet carrying multiple unsuc-

cessful table IDs and their corresponding search keys arrives

at the CPU, the CPU can efficiently perform packet lookups in

a batch. In a commercial switch server, the CPU is typically

a powerful multi-core processor, allowing us to distribute the

tables of multiple NFs across multiple CPU cores and perform

parallel lookups on these cores to enhance CPU processing

efficiency and reduce overall packet processing latency. As

shown in the right part of Fig. 5, the CPU utilizes multi-

threading to perform key lookups simultaneously on different

cores, and installs corresponding rules to table i and table k
in the switch, thus greatly improving processing efficiency.
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Fig. 5: Lazy submit for packet circulation overhead reduction.

A. Bloom Filter-aided Lazy Submit to Handle SFC Branch

The issue of lazy submit with SFC branch. The previous

lazy submit model relies on the absence of SFC table branches.

Once an SFC has a table branch, the subsequent search of the

NF table will depend on the search result of the preceding

NF table. In this case, we must obtain the correct search

result of the previous table in advance in order to determine

the exact table to search at the next stage. However, if we

do not cache the table entry denoting the branch in the fast

path, we have to go to the CPU to query the full table to

obtain the branch information. This will disrupt the continuous

table query process in the lazy submit model. That is, we

cannot postpone the packet submit to the CPU until the end

of the pipeline according to the lazy submit model, which

causes SFC table branch performance penalty. For instance,

in the upper left corner of Fig. 6, the search result of table i
significantly affects whether the branch result of the next table

is table j or table k. If we can cache the next-hop branch

information for each table in a compact manner within the

fast path, then there is no need to search the full table on

the CPU to obtain this information, thus still ensuring the

efficiency of delayed packet submission. Considering that hash

calculations are very convenient to perform on programmable

switches at the fast path, we can use succinct data structures

such as Bloom filters [16] to store branch information, without

consuming too much of the switch’s memory resources.

Encoding table search dependency with 2D Bloom filters.
A Bloom filter is a space-efficient probabilistic data structure

containing a bit vector with all bits initialized to 0. When

an item is added to the Bloom filter, it undergoes hashing

through multiple hash functions, and the corresponding bits in

the Bloom filter are set to 1 according to the hashing results.

While a Bloom filter can determine whether a key “may

belong to the set” or “definitely does not belong to the set”,

it cannot further narrow down the scope when dealing with

multiple sets. In other words, it cannot specify which set the

key belongs to from multiple sets. To overcome the limitation

of a single Bloom filter, here, we propose 2D Bloom filters,

represented by bit vectors in the form of a matrix (as shown in

the upper right corner of Fig. 6). The 2D Bloom filters actually

contain f Bloom filters, each has h hash functions (in Fig. 6,

f = 5, h = 4). To determine the table branch for a packet, we

compute based on the 2D Bloom filters following a two-step
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process, as shown in Algorithm 1. The first step is to encode

the relationship between a key and its next table ID into the

2D Bloom filters (Algorithm Line 2-8), and the second step is

to search the 2D Bloom filters to decode the next table ID for

an incoming key (Algorithm Line 9-15). With the 2D Bloom

filters maintaining the relationship between keys and their next

table IDs, when we experience a table search miss, we do not

need to query the remote CPU for branch information.

Specifically, for the encoding process (i.e., Function Gener-

ator() in Algorithm 1), for each key, we encode its next table

ID into an f -bit code (the f is the number of Bloom filters in

the 2D Bloom filters). Then, we check each bit of the f -bit

code in a for loop. If the checked bit is 1, we insert the key into

the corresponding Bloom filter using the hash functions along

with that Bloom filter. If the checked bit is 0, we do nothing.

The process needs to be done for all the keys in that table to

encode their next table IDs into the fast path. For the entire

fast path, we need to maintain one unit of 2D Bloom filters for

each table to encode the relationship between the keys in that

table and their next table IDs. For the decoding process (i.e.,
Function Selector() in Algorithm 1), for an incoming key, we

compute its next table ID based on the 2D Bloom filters. The

computation is straightforward: we just search the key in each

Bloom filter of the f Bloom filters. Then, we will get an f -bit

result with 1 denoting the search success and 0 denoting the

search fail. With the f -bit search result, we can decode the

next table ID for the incoming key in the fast path.

1 0 10 0

HF1

HF2

HF3

HF4

HF5

HF6

HF7

HF8

HF9

HF10

HF11

HF12

HF13

HF14

HF15

HF16

HF17

HF18

HF19

HF20

Search f BFs with Key
miss

Next Table ID = 
Decode(0b10010)

Skip to egress and
send to CPU

invalid

valid

 f-bit check result for f BFs

 h*f hash functions for f BFs

If all h HFs match

Table i
Mem. ALU
Mem.
Mem.

ALU
ALU

Table j
Mem. ALU

Table k
Mem. ALU

Check validity

Fig. 6: Next table selection with pre-encoded 2D Bloom filters.

False positive handling. Using Bloom filters inevitably

introduces false positives, where packets may be directed to the

wrong next branch tables. We handle false positives by using

fixed-weight codes (the number of 1s in the f -bit is fixed).

When encoding in Generator(), we fix the number of ’1’s in

the code to n (Algorithm Line 4). Correspondingly, we check

the weight before decoding in Selector() (Algorithm Line 13-

14). If the count is less than n, it indicates that the key does

not exist in the entire table. If the count exceeds n, it means

it needs to be sent to the CPU. Only when the count equals n,

the code will be decoded to retrieve the correct table ID for

packet forwarding.

Algorithm 1: BF-aided Branch Select Algorithm

1 BloomFilterSet→BFS, Next Table ID→ntid

2 Function Generator(key − ntid map):
3 for each key in key-ntid map do
4 code = encode(ntid) // encode to f-bit
5 for i = 0 to f do
6 if code[i] = 1 then
7 Insert key into BFS[i]

8 return BFS

9 Function Selector(key,BFS):
10 for i = 0 to f do
11 Search key in BFS[i]

12 code[i] = (Search BFS[i] success) ? 1 : 0

13 if check(code) = True then
14 ntid = decode(code)

15 return ntid

V. EVALUATION

A. Experimental Setup

We develop an emulation system to evaluate the perfor-

mance of HyperSFC on an x86 server with an Intel Xeon

Gold 5220 2.20GHz CPU and 16GB RAM, running Ubuntu

Linux 18.04. We use Mininet [17] to construct a topology

and implement a virtual programmable switch based on the

simple switch model of BMv2 [18] in our testbed. We connect

a virtual host with a port of the P4 switch to emulate a hyper-

converged infrastructure. When a table search miss occurs

in the switch, the packet is forwarded to the host with the

modified header. We use an agent on the host to process

the header and match the keys in the memory database.

When completing the full table search, the agent connects to

the BMv2 switch, and uses simple_switch_cli to dump the

corresponding table entries. We implement both busy submit

(461 lines of P4 code) and lazy submit (676 lines of P4 code)

on the P4 switch, and develop an agent based on rawsocket

and Redis (206 lines of C++ code) on the host, available on

our git repository [13]. We conduct experiments to measure the

latency, bandwidth, and associated costs of different models.

Additionally, we optimize a P4-based load balancer [19] using

HyperSFC and compare its performance with that of a load

balancer with the same logic implemented purely in software.

B. Latency Overhead

Different models in HyperSFC exhibit different packet

processing latencies. We implement SFC with the BMV2

switch containing different number of tables and measure

the packet latency of the busy submit (busy), lazy submit

(lazy), lazy submit with parallel table search (lazy-p), and

pure P4 switch forward (base). As shown in Fig. 7, the busy

submit has the highest latency because every table search

miss results in a packet circulation. While the lazy submit
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Fig. 7: Comparison of packet

processing latency of busy,

lazy, lazy-p models and pure

BMv2 forwarding.

Fig. 8: The lazy submit re-

duces the switch processing

latency and link transmission

latency of the busy submit.

Fig. 9: The lazy-p model re-

duces the CPU processing la-

tency of the lazy by searching

multiple tables in parallel.

Fig. 10: The false positives

during table dependency res-

olution in the switch pipeline

lead to increased latency.

Fig. 11: The lazy submit re-

duces the southbound band-

width consumption between the

switch and the CPU (4 tables).

Fig. 12: The memory required

to deploy 2D Bloom filter-

based table branch selector

and to handle false positives.

Fig. 13: The traffic completion

time of a load balancer refer-

ence design in pure BMv2 and

HyperSFC, respectively.

Fig. 14: Compared with the

pure software-based NF, Hy-

perSFC is less CPU-intensive

in its slow path.

reduces latency by minimizing repeated circulations, achieving

a 47% reduction when SFC contains ten NF tables, with even

larger reduction for more tables. The lazy submit can further

improve latency by simultaneously transmitting multiple table

information to the CPU. This enables parallel processing

of table search requests, leading to an overall reduction of

60%. In our setup, all packets are sent to the CPU due to

table misses, resulting in significant performance differences

between HyperSFC models and the base case. In reality, only

packets that experience a cache miss in the fast path are

sent up. When the cache hit rate is high, the average packet

processing latency will be close to that of the base case.

In order to better distinguish the contributions of lazy

submit in the pipeline and parallel lookups on the CPU to the

packet latency, we conduct a deeper analysis of the two steps.

In lazy submit, the optimization of latency primarily comes

from two aspects. First, lazy submit reduces the frequency

of resubmitting packets through switch processing. Second,

it minimizes packet circulation as much as possible, thereby

reducing the transmission latency over the link between the

CPU and the switch. As shown in Fig. 8, the absolute value

of the impact of switch processing is more significant. For

parallel lookups on the CPU, even if there are many table

misses in the SFC, lazy-p can minimize the latency overhead

to the time of a single circulation through parallel lookups.

Therefore, the advantage of parallel table lookups is positively

correlated with the number of tables (as shown in Fig. 9).

In the lazy submit model, we use a branch selector based on

2D Bloom filters to address the SFC table branch performance

penalty. However, false positives in branch selection during

pipeline processing can disrupt continuous table processing,

resulting in immediate submission of packets to the CPU. As

depicted in Fig. 10, an increase in false positives leads to a

higher number of circulations, resulting in bloated latency. In

the worst case, every missed branch selection can cause a false

positive, making it similar to busy submit. Each occurrence of

a false positive causes a certain amount of latency in lazy

submit, so it is important to minimize false positives. One

solution is to use larger Bloom filters to reduce false positives

or optimize caching strategies to reduce table search misses.

C. Bandwidth Overhead and Memory Consumption
Apart from latency, the circulation of packets between the

switch and CPU will also incur additional bandwidth con-

sumption. In busy submit, although less additional information

is attached each time the packet is sent to CPU, the increased

frequency of submit leads to greater bandwidth consumption.

Conversely, while lazy submit involves attaching a lot of

additional information in its submission, the reduced frequency

of submit results in overall more efficient bandwidth usage. As

shown in Fig. 11 , in the case of an SFC with 4 match-action

tables, busy submit consumes more bandwidth, reaching up

to 1120kbps. In comparison, lazy submit consumes less band-

width, peaking at 624kbps — a 44% reduction, accompanied

by a 20% reduction in total traffic processing time.
To address the pipeline branch issue, we introduce the 2D

Bloom filters to select the next table for a packet in the fast
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path. This requires additional memory consumption of the

switch, which will increase as the number of branches grows.

Moreover, to address false positives, we need even more

Bloom filters with additional memory usage. Typically, the

number of NF table branches is below 10. Fig. 12 illustrates

that each table with branches requires memory proportional to

the number of branches, and the memory required to encode

branches is on the order of a few hundred KB. Overall, such

memory consumption is within an acceptable range.

D. HyperSFC-based L4 Load Balancer

Finally, we evaluate the performance benefits that Hyper-

SFC can bring with a widely deployed NF (L4 load balancer).

Here, we compare three LB instances: firstly, a pure switch-

based LB with the P4 official implementation [19]; secondly,

our version of the LB based on the HyperSFC architecture,

which enhances the performance of the LB implemented

by the P4 official version; and finally, a pure software LB

implemented in C++ with the same logic. The P4 version of

the LB has the fastest forwarding speed but limited memo-

ries, while the software LB has a larger memory space but

lower performance due to forwarding based on CPU cycles.

Our HyperSFC architecture can simultaneously leverage the

advantages of both: achieving nice forwarding performance

on the fast path and maintaining a sufficient number of table

entries on the CPU on the slow path. Additionally, by caching

table entries on the fast path, we can minimize CPU usage.

In HyperSFC, the number of cached table entries on the

fast path affects the table lookup hit rate, which in turn

affects packet processing latency and the CPU load on the

slow path. In Fig. 13, we cache different proportions of table

entries to the fast path, resulting in the proportion of table

entries only on the CPU ranging from 0% to 90% (where

0% represents all traffic hitting the fast path, with no traffic

submitted to the CPU), and then observe the completion time

of traffic processing. Due to table lookup misses on the fast

path, HyperSFC LB takes longer to process traffic. However,

even when 90% entries are only on the CPU, there is not

a significant difference in the final completion time of the

traffic. This is because for stateful services like LB, each

flow only experiences one table lookup miss for the first

packet, and subsequent packets from the same flow can hit

the updated entries in the fast path. Therefore, HyperSFC’s

hierarchical model has a significant advantage in processing

state-intensive NFs. In Fig. 14, we compare the performance

differences between LB implemented purely in software and

LB based on HyperSFC. It can be seen that all processing in

the purely software-based LB relies on CPU cycles, consuming

an average of 20.86% of CPU resource, while HyperSFC LB

consumes very little CPU resource because it only submits the

first packet of each flow that misses to the CPU. Even in the

most extreme case, where there are no cached table entries in

the fast path initially, HyperSFC only consumes 3% of CPU

resource due to the submission of the first packet. In contrast,

the software-based LB needs to consume CPU resource to

process each arriving packet.

VI. RELATED WORK

Due to their ultra-high performance, small form factor,

and pipeline-based forwarding architecture, programmable

switches [6] are considered an ideal platform for implement-

ing SFC in resource-constrained edge clouds. For example,

P4SC [20] offers high-level primitives to build SFCs and

compiles the SFC representations into the programmable

switch pipeline. Dejavu [14] composes multiple sequential

NFs into a single programmable switch, leveraging its pipeline

recirculation capability to handle long SFCs that cannot be

accommodated within a single switch pipeline. P4Visor [21]

consolidates multiple SFCs into a single programmable switch

by merging different P4 programs with code redundancy to

improve resource efficiency. However, these works do not

consider the issue of insufficient switch memories to accom-

modate state-intensive NFs such as SNAT [10].

Other works propose hierarchical SFC provisioning to ad-

dress the issue of switch memory insufficiency through differ-

ent table partition approaches to different memory hierarchies.

For example, P4SFC [22] mentions partially offloaded NFs,

which are similar to our proposal; however, it does not discuss

how to efficiently conduct packet circulation between the

switch and CPU on per-stage table search misses. P4NFV [12]

mentions multiple packet traversals between the switch and

CPU during sequential NF table searches. However, P4NFV

adopts a totally different table partition approach: it places

stateful NFs on the CPU and other NFs with small tables

in the switch. In comparison, our HyperSFC caches popular

entries of each table in the switch and leaves their full tables

on the CPU. Our cache-based table partitioning leverages

traffic locality, resulting in improved SFC performance (e.g.,
with fewer circulations). Similarly, Metron [23] divides the

SFC into stateless and stateful operations. It instructs all

available programmable hardware, including switches and

NICs, to implement the stateless operations, while dispatching

incoming packets to CPU cores that execute their stateful

operations. TEA [24] allows to extend the limited switch

memories to large virtual tables built on external DRAM.

TEA also does not discuss the efficient packet circulation

behaviors when per-stage table search misses occur in the

switch pipeline. Tiara [25] proposes to fully use heterogeneous

hardware to divide the matching tables of the stateful NF into

memory-intensive tasks and throughput-intensive tasks, and

map them into the most appropriate hardware, respectively

(e.g., programmable switch, FPGA, CPU). Tiara does not

extend the architecture from NF processing to SFC processing.

Microsoft’s Sirius [26] offloads NF processing from hosts [27]

to a remote shared DPU pool. However, it also does not

elaborate on how to conduct SFC with the collaboration of

the hosts and the remote DPU pool. LuoShen [7] leverages

similar switch server hardware developed by Alibaba Cloud

to accommodate NFs for the edge cloud. However, LuoShen

leaves the entire stateful NFs (such as LB) to the CPU and

FPGA, without caching their popular entries to the switch

pipeline for further performance acceleration.
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VII. CONCLUSION

Achieving state-intensive SFC in the edge cloud under the

stringent constraints of hardware cost and deployment space

is more challenging than in public cloud environments. In

this work, we propose HyperSFC, a service function chaining

architecture dedicated to the edge cloud, based on the recently

proposed hyper-converged switch server. Specifically, to ad-

dress the performance limitation of CPU-based NF processing,

we offload the forwarding tables of NFs to the programmable

switch and propose the busy submit model with packet cir-

culation to address the fast path table search miss issue due

to the limited on-chip memories of the switch. Furthermore,

to address repeated circulations in the SFC context, which

increase the packet latency and CPU utilization, we propose

the lazy submit model, delaying packet submission to the

CPU until the end of the switch pipeline and leveraging 2D

Bloom filters to reduce unnecessary circulations due to NF

table search dependencies.
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