
Accelerating Mega-Scale Satellite Network
Simulation in NS-3 via MPI-based Parallelization

Haibin Song∗, Tian Pan∗†§, Guohao Ruan∗, Yan Zheng†, Ying Wan‡, Jiao Zhang∗†, Tao Huang∗†, Yunjie Liu∗†
∗Beijing University of Posts and Telecommunications, Beijing, China

†Purple Mountain Laboratories, Nanjing, China
‡China Mobile (Suzhou) Software Technology Co., Ltd, Suzhou, China

§Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, China
∗{haibin, pan, ghruan, jiaozhang, htao, liuyj}@bupt.edu.cn †zhengyan@pmlabs.com.cn ‡wanying2@cmss.chinamobile.com

Abstract—Due to the high costs of low Earth orbit (LEO)
satellite manufacturing and launch, as well as the complexity of
in-orbit network protocol debugging, simulating and verifying
satellite network protocols on the ground before satellite launch
holds significant importance. Compared to the expensive emula-
tion with one-to-one replication, simulation (e.g., using ns-3) can
achieve discrete event processing at a relatively lower cost by
extending the wall clock time. However, very few studies have
used ns-3 for LEO satellite network simulation, facing challenges
such as faithfully simulating the on/off state switching of inter-
satellite links (ISLs) and achieving simulation performance scal-
ability for high-density satellite constellations. In this work, we
propose a system to accelerate mega-scale LEO satellite network
simulation in ns-3 via MPI-based parallelization. Specifically,
we simulate ISLs based on ns-3’s P2P channels/P2P remote
channels and achieve run-time link connection/disconnection
by implementing stateful traffic dropping inside the network
interface. Then, we conduct concurrent simulation with ns-3’s
parallel and distributed simulation capability and partition the
satellite constellation into multiple simulation processes through
a hierarchical clustering algorithm and automated scripts, con-
sidering satellite locality and inter-process workload balance. Our
evaluation shows significant speed improvements via paralleliza-
tion, e.g., a 373% speedup with 12 processes for LEO-192, and
a 156% speedup with 3 processes for LEO-3072.

I. INTRODUCTION

As ground-based network infrastructure continues to ma-

ture, an increasing amount of research redirects its focus

toward expanding network coverage to diverse and challenging

areas, including the ocean, sky, and space. Low Earth orbit

(LEO) satellite networks, serving as a valuable complement

to ground-based network infrastructure, have recently become

a hot topic of interest in both academia and industry. Ongoing

research delves into various aspects of LEO satellite networks,

such as routing [1–3], mobility management [4, 5], congestion

control [6], and more. The research of network protocols

and systems typically necessitates testing and verifying new

ideas in real production environments. However, considering

the high costs of satellite manufacturing and launch, along

with the complexity of testing and verifying network protocols

in orbit, the ability to simulate or emulate satellite network

functionalities on the ground before launching satellites into

This work is supported by the National Natural Science Foundation of
China (62372053), the research project (NO. Y2024CXT002) of China Mobile
(Suzhou) Software Technology Co., Ltd.. Corresponding author: Tian Pan.

space would significantly reduce the research and testing costs

of satellite networks, facilitating the improvement of protocol

design through rapid iteration on the ground.

In comparison to the simulation of ground-based networks,

what are the specific demands and challenges for simulating

LEO satellite networks? The first issue stems from the frequent

changes in the network topology of LEO satellite constella-

tions, which typically include inter-satellite and satellite-to-

ground topologies. In contrast, ground-based network topolo-

gies usually remain stable for longer periods. In other words,

LEO satellite network simulation needs to faithfully and effi-

ciently realize the frequent changes in the network topology.

The second issue lies in the scalable simulation performance

for large-scale satellite constellations. As satellite constella-

tions continue to grow in size, there are large constellations

with thousands or even tens of thousands of satellites [7].

Simulating such large constellations with only a single process

or thread would lead to excessively long wall clock time.

Consequently, fully harnessing concurrent simulation capabil-

ities with the modern multi-core or distributed architectures

becomes necessary for LEO satellite network simulation [8].

Based on the underlying mechanisms, existing network

testbeds can be classified into two categories: emulation and

simulation. The former involves a one-to-one mapping of

the original system’s hardware and software components,

providing a more accurate representation of the real-world

systems [9–11]. The latter uses models and discrete event

processing to replicate the behavior of the original system

without emulating it at a one-to-one level [12, 13]. Although

emulation can more faithfully reflect the behavior of real

systems, it requires the construction of a significant amount of

hardware to handle actual network traffic, resulting in higher

human labor costs and hardware investments. In emulation,

the hardware investments will grow proportionally with the

actual size of the emulated network. If hardware resources

are insufficient, issues such as packet loss may arise. By

contrast, based on discrete event processing, simulation can

“exchange time for resources”. That is, if simulation hardware

resources are insufficient, one can flexibly extend wall clock

time to wait for the completion of discrete event processing.

As a well-known network simulator, ns-3 [12] is utilized for

simulating numerous ground-based network systems. How-

2024 IEEE International Conference on Communications (ICC): SAC Satellite and Space Communications Track

978-1-7281-9054-9/24/$31.00 ©2024 IEEE 5610

IC
C

20
24

 -
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
om

m
un

ic
at

io
ns

 |
 9

78
-1

-7
28

1-
90

54
-9

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
C5

11
66

.2
02

4.
10

62
29

34

Authorized licensed use limited to: Tsinghua University. Downloaded on December 12,2024 at 08:46:46 UTC from IEEE Xplore. Restrictions apply.

ever, there has been limited usage of ns-3 in simulating LEO

satellite networks. In the recently proposed ns-3-leo [13], the

authors develop a module for ns-3, which includes models

for the network mobility and link characteristics of LEO

satellite constellations. However, its inter-satellite links (ISLs)

are simulated under a broadcast mode where a satellite can

broadcast to all surrounding satellites within a predefined

distance. This differs from real-world ISL implementations,

which use directed beams or even laser light with traffic

transmitted to one destination at a time. Moreover, ns-3-leo

follows a single-process simulation model, which may have

scalability issues for large-sized constellations.
Considering the cost advantages of simulation over emula-

tion, in this study, we continue to use ns-3 for LEO satellite

network simulation. To address the limitations of ns-3-leo,

we make improvements in the way of ISL simulation as

well as the simulation performance scalability. Specifically,

we leverage ns-3’s point-to-point (P2P) channels to precisely

simulate ISLs, replacing ns-3-leo’s broadcast-based ISL im-

plementation. Considering that the P2P channel cannot change

the link on/off state during run-time through commands like

“detach”, we make a workaround with traffic dropping inside

the network interface. Based on the predictable movement

patterns of the satellite constellation, we build a state machine

for each satellite to predict its link on/off states. During the

transition of the state machine, we conduct a function return

in the “TransmitStart()” function to achieve link disconnection

or disable the previous function return for link reconnection.
To enhance the scalability of simulation, we utilize ns-3’s

parallel and distributed simulation capability by partitioning a

simulation task into multiple subtasks and connecting them

with ns-3’s P2P remote channels implemented with MPI

(Message Parsing Interface) [14]. In practice, when divid-

ing a constellation simulation task across multiple processes

based on orbital planes, all inter-satellite link on/off events

occur on the inter-process P2P remote channels. Since the

P2P remote channels also do not support run-time connec-

tion/disconnection, we apply the proposed link on/off mech-

anism for the P2P channels to the P2P remote channels.

Furthermore, we propose a solution for optimally partitioning

a constellation into multiple processes based on a hierarchical

clustering algorithm to cluster nearby satellites and balance

simulation workload. Finally, using scripts for an exhaustive

search, we can determine the optimal number of processes for

the best parallel simulation performance.
Our major contributions are summarized as follows.

• We propose a method for simulating ISLs based on ns-

3’s P2P channels/P2P remote channels. It can achieve

link connection/disconnection by implementing stateful

traffic dropping inside the network interface. This method

is closer to the reality than broadcast-based ISLs in ns-3-

leo, and the workaround to achieve link on/off does not

require extensive modifications to ns-3’s underlying code.

• Leveraging ns-3’s parallel and distributed simulation ca-

pability, we partition the simulation of an LEO satel-

lite constellation into multiple concurrent processes con-

nected via P2P remote channels, thus achieving scalable

simulation. We propose a partitioning strategy for the

constellations based on hierarchical clustering and write

scripts for searching the optimal number of partitions.

• The evaluation shows significant speed improvements

in ns-3 via MPI-based parallelization, e.g., using 12

processes results in a 373% speedup for LEO-192 while

using 3 processes leads to a 156% speedup for LEO-3072.

II. BACKGROUND AND MOTIVATION

A. Low Efficiency of Single-Process NS-3 Simulation

To show the lack of scalability in single-process ns-3 simu-

lation, we measure the performance of ns-3-leo as the scale of

simulation nodes increases. The experiment is conducted on an

Intel Gold 5220 CPU @ 2.20GHz, with the selection of a pair

of ground terminals for traffic transmission. The constellation

runs the AODV routing protocol. Fig. 1 shows the wall clock

time of LEO satellite constellation simulation with ns-3-leo.

When simulating a 1033-node constellation for 100s with a

packet forwarding rate of 1000pps, the wall clock time reaches

10 hours. When simulating a 4225-node constellation for 100s

with a packet forwarding rate of 10pps, the wall clock time

reaches 153 hours. It is evident that (1) ns-3-leo’s broadcast-

based ISL implementation consumes substantial computational

resources despite featuring complex ISL modeling; (2) with

single-process simulation, the expansion of constellation scale

leads to non-scalable simulation performance.

50.63

152.81

285.84

610.27

0.63 1.79 3.04 9.72

1 10 100 1000
0

100

200

300

400

500

600

W
al

l c
lo

ck
 ti

m
e

(h
ou

r)

Packet forwarding rate (pps)

 4425 nodes
 1033 nodes

Fig. 1. Wall clock time of simulating two constellations with ns-3-leo [13].

B. NS-3’s Parallel and Distributed Simulation

To accelerate simulation efficiency, many simulation tools

provide parallel simulation capabilities. For example, ns-3’s

parallel and distributed simulation involves leveraging multiple

logical processes to execute simulations concurrently. This ap-

proach utilizes parallel processing techniques to distribute the

computational workload across multiple computing resources.

Each process operates independently, simulating a portion of

the network or system. Communication between processes is

facilitated through message passing mechanisms (e.g., MPI).

By partitioning the simulation workload and running it in

parallel, ns-3 can exploit the computational resources available

in multi-core systems or distributed computing environments,

thereby accelerating simulation performance and enabling the

simulation of larger and more complex networks or systems.

2024 IEEE International Conference on Communications (ICC): SAC Satellite and Space Communications Track

5611
Authorized licensed use limited to: Tsinghua University. Downloaded on December 12,2024 at 08:46:46 UTC from IEEE Xplore. Restrictions apply.

protocol
stack

P2P
channel

application

net device

protocol
stack

application

net device

packet

protocol
stack

application

net device

LP 1 LP 2

Node 1 Node 2 Node 3
MPI MPI

P2P
remote
channel

Fig. 2. In ns-3’s parallel simulation, P2P channels are for ISLs within a logical
process, while P2P remote channels are for ISLs across logical processes.

In ns-3, we can use a P2P channel to connect two network

devices (e.g., satellites) if they are within the same logical pro-

cess. For parallel simulation with multiple logical processes, if

two network devices are separated into two logical processes,

we have to use a P2P remote channel to connect them,

as shown in Fig. 2. For parallel simulation, data exchange

across logical processes occurs from time to time for traffic

transmission and simulation synchronization. During parallel

simulation, ns-3 has the ability of lookahead, which allows

each logical process to predict future events and independently

advance its simulation time without waiting for frequent

synchronization with other logical processes, thus minimizing

synchronization overhead and improving simulation efficiency.

Once a logical process computes all events within its looka-

head phase, it enters the synchronization phase. At this phase,

messages are exchanged between logical processes, which

contain packets, timestamps, shared data structures, etc.

With the above parallel simulation mechanisms, ns-3 is

capable of accelerating network simulation with fixed topolo-

gies, as P2P channels/P2P remote channels can be established

before simulation and remain unchanged afterward. However,

due to the highly dynamic nature of ISLs in LEO satellite

networks, both intra-process P2P channels and inter-process

P2P remote channels need to support run-time disconnection

and reconnection. For instance, if we divide an LEO satellite

constellation across multiple logical processes based on orbital

planes, all inter-satellite link on/off events will occur on the

inter-process P2P remote channels. Unfortunately, ns-3 cur-

rently does not provide the link detach operation or something

similar for both P2P channels and P2P remote channels, posing

a major challenge for LEO satellite network simulation.

III. DESIGN AND IMPLEMENTATION

A. ISL Simulation with On/Off Link State Switching

Simulating wireless ISLs with wired links. The ns-3-leo

utilizes a complex broadcast model to characterize the con-

nectivity of ISLs, which incurs high computational overhead

and fails to faithfully simulate real-world ISLs with precise

pointing. Considering that our simulation primarily focuses on

network and transport layer protocols, the simulation system

only needs to provide ISL-level connectivity or congestion

status for these protocols. Hence, we employ P2P channels

(the wired link model in ns-3) to simulate wireless ISLs with

precise pointing. Above P2P channels, the congestion status

of ISLs can be simulated by adjusting parameters such as

packet loss rate and queuing delay. Furthermore, compared to

the complex broadcast model of ns-3-leo, P2P channels have

less computational overhead, thereby significantly reducing the

wall clock time during simulation. However, P2P channels

also have limitations as they cannot characterize the protocol

behaviors at the link layer or physical layer.

Satellite network interface open/close prediction. After we

choose to use a wired link to simulate the wireless ISL,

we need to determine its connectivity based on the real-time

position of the satellite. Generally, for polar-orbit LEO satellite

constellations, when a satellite is in high-latitude regions, its

ISLs will be closed due to antenna tracking limitations. Based

on our observation of the movement patterns of polar-orbit

constellations, we find that each satellite has 6 stable neighbor

satellites. For a given satellite, it is always connected with

the 2 neighbor satellites on the same orbit, while alternatively

connected with 2 out of the 4 satellites on neighbor orbits. For

instance, in Fig. 3, satellite A is connected with {C, E} and

{B, D} before and after its crossing the polar zone.

Fig. 3. The ISL switching between a satellite and its neighbor satellites in
different orbits when crossing the polar zone.

Assuming for each inter-orbit satellite network interface,

once its latitude exceeds a threshold, it will be closed, then

we can predict the open/close state of each inter-orbit satellite

network interface based on the state machine described in

Fig. 4. For each inter-orbit interface, it will visit the 4

states {OPEN, POLAR1, CLOSE, POLAR2} sequentially and

periodically. Among the 4 states, the interface will be closed

in state POLAR1, POLAR2 and CLOSE, and reopened only

in state OPEN. We predict the interface’s state based on its

position first, rather than directly predicting the ISL’s on/off

state, because an ISL may span polar and non-polar zones.

Fig. 4. The state machine of a satellite network interface (i.e., netdevice in
ns-3) for its open/close state prediction.

ISL on/off calculation based on associated interface states.
Once we have obtained the real-time open/close state of each

2024 IEEE International Conference on Communications (ICC): SAC Satellite and Space Communications Track

5612
Authorized licensed use limited to: Tsinghua University. Downloaded on December 12,2024 at 08:46:46 UTC from IEEE Xplore. Restrictions apply.

interface through the state machine, we can calculate the con-

nectivity of the corresponding ISLs. Since an ISL is associated

with two interfaces and the ISL is connected only when both

interfaces are turned on, we take the logical AND of the

interface states to find the ISL’s on/off state. It is worth noting

that when any interface is in the POLAR1/POLAR2/CLOSE

state, the ISL is considered to be disconnected. As mentioned,

the ISL is implemented with ns-3’s P2P channel/P2P remote

channel, and it has four original states {INITIALIZING,

IDLE, TRANSMITTING, PROPAGATING}. In order to avoid

modifying the original code for the channels, we introduce a

new state called “STOPPING” to represent the disconnection

of an inter-orbit ISL. When both interfaces of an ISL go to the

OPEN state, the ISL will transition from STOPPING to IDLE,

thus entering the normal channel state transition process.

ISL on/off implementation in ns-3. After obtaining the on/off

state of an ISL, we can simulate the disconnection of the ISL

in ns-3 by actively dropping packets. Specifically, the sender

interface’s netdevice will call the ScheduleWithContext() func-

tion or the SendPacket() function within the TransmitStart()

function to send packets within or across simulation logical

process. When we determine that the ISL needs to be dis-

connected (i.e., channel.state = STOPPING), we can return

early in TransmitStart(), thereby avoiding executing packet

transmission in ScheduleWithContext() or SendPacket(), thus

achieving active packet dropping on the netdevice.

B. LEO Satellite Constellation Partition

Hierarchical clustering-based constellation partition. Af-

ter providing the mechanism for partitioning constellations

into multiple processes, it is equally important to specify

the partition strategy. Clearly, during partitioning, we should

strive to group adjacent satellites into the same process to

minimize inter-process communication overhead. Furthermore,

we should aim to distribute the traffic processing load as

evenly as possible across different processes to fully leverage

the computing power on multi-core or distributed nodes.

Accordingly, we utilize the existing hierarchical clustering

algorithm [15] to partition the LEO satellite constellations.

Hierarchical clustering is a method used in cluster analysis to

group similar objects into clusters or groups. It builds a hier-

archy of clusters by either iteratively merging smaller clusters

into larger ones (agglomerative approach) or by splitting larger

clusters into smaller ones (divisive approach). Here, we adopt

the agglomerative approach for satellite constellation partition.

In the agglomerative hierarchical clustering approach, the

algorithm takes the following general steps: 1. each data point

starts as its own cluster; 2. at each step, the two closest clusters

are merged into a larger cluster; 3. this process continues until

all data points belong to a single cluster.

For our specific satellite constellation partition scenario,

initially, we let each satellite in an M*N constellation (where

M is the number of orbits and N is the number of satellites per

orbit) form a cluster, and assign a weight w to each satellite

based on its traffic load. Then, we continuously calculate

the distance between two clusters considering both the inter-

satellite physical distance and the two satellites’ traffic load,

and merge the closest two clusters. This process is iterated

repeatedly until the number of clusters decreases from the

initial total number of satellites to the desired number of

partitions we need to create. The distance between two clusters

can be calculated as

distance1,2 = w1 · w2 ·
√
(x1 − x2)2 + (y1 − y2)2

where, w1, w2 are traffic load at 2 satellites, and (x1,

y1), (x2, y2) are the coordinates of 2 satellites in the con-

stellation. According to the distance equation, the satellites

closer together with lighter traffic loads will be clustered first,

ensuring locality during clustering and maintaining balanced

traffic loads across different clusters (thus avoiding scenarios

where two heavily loaded satellites run on the same process).

When two clusters are merged into one cluster, the weight of

the new cluster is the sum of the weights of the two previous

clusters, and the position of the new cluster is the midpoint of

the line connecting the positions of the two previous clusters.

Automated scripts for finding the optimal partition num-
ber. When we choose different numbers of partitions, the

simulation performance may be different. This depends on

many factors, such as the size of the constellation, the traffic

model, the number of CPU cores or distributed nodes, and

so on. To find the optimal partition number for the best

simulation performance, we write a script as the outer loop,

continuously testing different numbers of partitions’ simula-

tion performance, thereby finding the optimal partition number

for performance for each parallel simulation instance.

IV. EVALUATION

A. Experimental Settings

In order to evaluate the impact of different factors on the

parallel simulation efficiency as well as the costs of parallel

simulation, we construct M*N polar-orbit constellations and

select a pair of satellites for traffic generation and reception.

The LEO satellite constellations run the AODV routing proto-

col. The experiments are conducted on a server with an Intel

Gold 5220 CPU @ 2.20GHz, 16GB of RAM, and Ubuntu

18.04. The parameter setting by default is listed in Table I.

TABLE I
PARAMETER SETTING BY DEFAULT OF NS-3 PARALLEL SIMULATION FOR

LEO SATELLITE CONSTELLATIONS

Major Parameter Value
Number of satellite orbits (M) 6-48

Number of satellites in each orbit (N) 8-64

Packet forwarding rate 100pps

Packet size 1000B

Simulation time 200s

Polar zone boundary 70 degree

Sending node Satellite at (M, N/4+1)

Receiving node Satellite at (1, 1)

Data rate of the channel 5Mbps

Latency of the channel 5ms

2024 IEEE International Conference on Communications (ICC): SAC Satellite and Space Communications Track

5613
Authorized licensed use limited to: Tsinghua University. Downloaded on December 12,2024 at 08:46:46 UTC from IEEE Xplore. Restrictions apply.

150 250 350 450100 200 300 400
10

30

50

70

90

20

40

60

80

100
W

al
l c

lo
ck

 ti
m

e
(s

)

Simulation time (s)

 Single process
 Partition randomly
 Partition by orbit
 Hierarchical clustering

Fig. 5. The acceleration effect of
different partition strategies (LEO-48).

6*8 6*16 12*16 12*32 24*32 24*64 48*64

50

150

250

0

100

200

W
al

l c
lo

ck
 ti

m
e

(s
)

Number of satellites

 1 process
 3 processes
 6 processes

Fig. 6. The acceleration effect at
different satellite constellation scales.

2 4 6 8 10 12

0

1

2

3

4

0

1

2

3

4

Ef
fic

ie
nc

y

Sp
ee

du
p

Number of processes

 6*8 nodes 24*32 nodes
 12*16 nodes 48*64 nodes
 Speedup
 Efficiency

Fig. 7. The acceleration effect with
different numbers of logical processes.

0.1 0.3 0.50.0 0.2 0.4
0

100

200

300

400

500

600

700

800

W
al

l c
lo

ck
 ti

m
e

(s
)

Busy channels / all channels

 1 process
 3 processes
 6 processes

Fig. 8. The acceleration effect by
adding more busy channels (LEO-48).

B. Impact of Factors on Parallel Simulation Efficiency

Partition strategies. In Fig. 5, we compare the simulation

efficiency of different partition strategies, including single

process, partition randomly, partition by orbit, and hierarchical

clustering. It can be observed that the hierarchical clustering-

based partition yields the best result because it simultaneously

considers satellite locality and balancing workload across

different partitions. Furthermore, the slight variations in the

slope of these curves are noticeable, leading to an accumula-

tion of differences between multi-process and single-process

simulations over time. The underlying reason is that multi-

process simulations take longer during the initialization phase

as they need to initialize within each process. However, as

time progresses, the advantages of multi-process simulations

become increasingly apparent.

Network scales. Fig. 6 illustrates the impact of varying

network scales on simulation efficiency as the number of orbits

or satellites within each orbit incrementally increases. The

findings indicate that when the number of in-orbit satellites

grows, the total wall clock time does not increase significantly,

as the number of hops for packets from source to destination

has not increased too much. Conversely, increasing the number

of orbits results in a proportional increase in the number

of hops for packets from source to destination, consequently

prolonging the total wall clock time. Additionally, it can be

seen that, as the number of satellites increases, the acceleration

effect of parallel simulation on ns-3 gradually diminishes.

Numbers of logical processes. Fig. 7 shows the speedup and

efficiency of ns-3 parallel simulation of satellite constellations

with different numbers of logical processes, where the speedup

is defined as Sp = T1/Tp, p refers to the number of processes,

T1 refers to the time for the single-process simulation, Tp

refers to the time for the parallel simulation with p processes.

Efficiency is another measure of performance, defined as

Ep = Sp/p = T1/(p · Tp). From Fig. 7, we can see that

when the number of processes is small, increasing the number

of processes leads to better speedup in parallel simulation.

However, as the number of processes surpasses a threshold,

the speedup effect starts to diminish due to the increasing

overhead of synchronization between processes. For mega-

scale constellations (e.g., LEO-3072), the maximum speedup

is achieved with a small number of processes (e.g., 3). For

smaller constellations, the maximum speedup is achieved with

a larger number of processes. The efficiency of all constella-

tions reaches maximum at 3 processes. Besides, there is a

noise point on Fig. 7: when the number of processes is 2, the

speedup of parallel simulation is unexpectedly lower compared

to single-process simulation. After extensive debugging, we

discover that when there are 2 processes, ns-3 still schedules

the simulation tasks of both processes on a single CPU

core, leading to degradation in performance. Currently, we

are unaware of the exact reason behind the ns-3’s scheduling

behavior when the number of processes is 2.
Number of busy channels. In Fig. 8, we let more pairs of

satellites send and receive traffic to create more busy channels

in an LEO-48 constellation and evaluate the corresponding

wall clock time for parallel simulation with different number

of logical processes. The evaluation illustrates that when the

number of busy channels grows, the advantages of parallel

simulation become increasingly significant as the efficiency

of single-process simulation is throttled by the limited perfor-

mance of a single CPU core.
Traffic rates. In Fig. 9, we gradually increase the sending rate

of traffic from 50pps to 250pps, and then observe the perfor-

mance when allocating different numbers of logical processors

for parallel simulation. The results show that when the traffic

sending rate is low, due to the relatively large communication

and synchronization overhead between multiple simulation

processes, the wall clock time of multi-process (12 processes)

simulation is actually higher than that of single-process simu-

lation. However, as the traffic sending rate gradually increases,

the efficiency of single-process simulation begins to lag behind

multi-process simulation. The slopes of the curves representing

different simulation parallelism indicate that increasing the

number of simulation processes can effectively handle high-

throughput simulation traffic.

C. Costs of Parallel Simulation
Memory consumption. Fig. 10 illustrates the memory con-

sumption of single-process and multi-process LEO satellite

network simulations under different numbers of processes and

satellite nodes in ns-3. From the figure, it can be seen that as

the number of nodes increases, the total memory consumption

of the simulation also increases; similarly, as the number of

simulation processes increases, the total memory consumption

of the simulation also increases. Taking the LEO-3072 constel-

lation as an example, using 12 simulation processes consumes

23.8% more memory than a single process. As shown in Fig. 7,

LEO-3072 achieves the best speedup when the number of

2024 IEEE International Conference on Communications (ICC): SAC Satellite and Space Communications Track

5614
Authorized licensed use limited to: Tsinghua University. Downloaded on December 12,2024 at 08:46:46 UTC from IEEE Xplore. Restrictions apply.

250 750 1250 1750 2250500 1000 1500 2000
75

125

175

225

275

100

150

200

250

300
W

al
l c

lo
ck

 ti
m

e
(s

)

Throughput (kbps)

 Single process
 6 processes
 12 processes

Fig. 9. The acceleration effect under
different traffic rates (LEO-3072).

1 3 6 122 4 8
20

25

30

35

40

45

50

M
em

or
y

co
ns

um
pt

io
n

(%
)

Number of processes

 6*8 nodes
 12*16 nodes
 24*32 nodes
 48*64 nodes

Fig. 10. The memory usage with
different numbers of logical processes.

2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

W
al

l c
lo

ck
 ti

m
e

(s
)

Number of processes

 12*16 nodes
 24*32 nodes
 48*64 nodes

Fig. 11. Time for executing the hier-
archical clustering algorithm.

80 352 1472 6016160 704 2944
36

38

40

42

44

46
 Single process
 6 processes
 Memory consumption
 Wall clock time

Number of inter-process links

M
em

or
y

co
ns

um
pt

io
n

(%
)

0

50

100

150

200

250

W
al

l c
lo

ck
 ti

m
e

(s
)

Fig. 12. The memory usage and accel-
eration effect with different numbers of
inter-process links without traffic.

processes is set to 3, with a memory increase of 4.4% (i.e.,
0.8GB) compared to a single process.

Time for hierarchical clustering execution. Fig. 11 displays

the time required for the hierarchical clustering algorithm to

partition for satellite constellations of different sizes. When the

number of satellite nodes is 3072, the algorithm’s execution

time is less than 80s; when the number of satellite nodes is

lower in other cases, the execution time is less than 10s. From

the figure, it can be observed that the number of clustered

nodes is the primary factor affecting the algorithm’s execution

time. The number of logical processes has a relatively minor

impact on the algorithm’s execution time.

Cost of inter-process links. Fig. 12 explores the impact

of inter-process link (i.e., P2P remote channel) number on

memory consumption and wall clock time when there is

no data plane traffic in the links. The more links between

processes, the greater the overhead of synchronization and

communication between these processes. Even if there is no

data plane traffic in the links between processes, parallel

simulation with ns-3 still requires some additional memory.

As the number of links between processes increases, the

wall clock time of parallel simulation also becomes longer.

In contrast, single-process ns-3 simulation achieves higher

efficiency with less inter-process synchronization overhead.

V. CONCLUSION

In this work, we accelerate mega-scale satellite network

simulation in ns-3 via MPI-based parallelization. Specifically,

we simulate ISLs based on ns-3’s P2P channels/P2P remote

channels and achieve run-time link connection/disconnection

in LEO satellite constellations by implementing stateful traffic

dropping inside the network interface. To scale the simulation

performance, we leverage ns-3’s parallel and distributed sim-

ulation capability and partition the satellite constellation into

multiple simulation processes through a hierarchical clustering

algorithm and automated search scripts, considering satellite

locality and inter-process workload balance. Our evaluation

shows significant speed improvements in satellite network

simulation via ns-3’s parallelization.

REFERENCES

[1] M. Handley, “Delay is not an option: Low latency routing in
space,” in Proceedings of the 17th ACM Workshop on Hot Topics
in Networks, 2018, pp. 85–91.

[2] T. Pan, T. Huang, X. Li, Y. Chen, W. Xue, and Y. Liu,
“Opspf: Orbit prediction shortest path first routing for resilient
leo satellite networks,” in ICC 2019-2019 IEEE International
Conference on Communications (ICC). IEEE, 2019, pp. 1–6.

[3] G. Ruan, T. Pan, C. Lu, Z. Luo, H. Wang, J. Zhang, Y. Shen,
T. Huang, and Y. Liu, “Lightweight route flooding via flooding
topology pruning for leo satellite networks,” in ICC 2022-IEEE
International Conference on Communications. IEEE, 2022,
pp. 1149–1154.

[4] J. Hu, T. Pan, Y. Chen, X. Zhang, T. Huang, and Y. Liu, “Lisp-
leo: Location/identity separation-based mobility management
for leo satellite networks,” in GLOBECOM 2022-2022 IEEE
Global Communications Conference. IEEE, 2022, pp. 1558–
1563.

[5] S. Ji, M. Sheng, D. Zhou, W. Bai, Q. Cao, and J. Li, “Flexible
and distributed mobility management for integrated terrestrial-
satellite networks: Challenges, architectures, and approaches,”
IEEE Network, vol. 35, no. 4, pp. 73–81, 2021.

[6] Z. Wang, J. Zhang, Y. Zhang, T. Pan, and T. Huang, “A
transport control protocol for low earth orbit satellite networks
based on link information estimation,” Computer Research and
Development, vol. 60, no. 8, pp. 1846 – 1857, 2023.

[7] F. Michel, M. Trevisan, D. Giordano, and O. Bonaventure, “A
first look at starlink performance,” in Proceedings of the 22nd
ACM Internet Measurement Conference, 2022, pp. 130–136.

[8] S. Bai, H. Zheng, C. Tian, X. Wang, C. Liu, X. Jin, F. Xiao,
Q. Xiang, W. Dou, and G. Chen, “Unison: A parallel-efficient
and user-transparent network simulation kernel,” 2024.

[9] T. Pan, X.-C. Li, W.-H. Xue, Z.-Z. Bian, T. Huang, and Y.-
J. Liu, “A docker-based leo satellite network testbed,” Chinese
Journal of Computers, vol. 45, no. 9, pp. 2029 – 2046, 2022.

[10] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:
rapid prototyping for software-defined networks,” in Proceed-
ings of the 9th ACM SIGCOMM Workshop on Hot Topics in
Networks, 2010, pp. 1–6.

[11] Z. Lai, H. Li, Y. Deng, Q. Wu, J. Liu, Y. Li, J. Li, L. Liu,
W. Liu, and J. Wu, “{StarryNet}: Empowering researchers to
evaluate futuristic integrated space and terrestrial networks,” in
20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), 2023, pp. 1309–1324.

[12] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and
J. Kopena, “Network simulations with the ns-3 simulator,”
SIGCOMM demonstration, vol. 14, no. 14, p. 527, 2008.

[13] T. Schubert, L. Wolf, and U. Kulau, “ns-3-leo: Evaluation tool
for satellite swarm communication protocols,” IEEE access,
vol. 10, pp. 11 527–11 537, 2022.

[14] J. Pelkey and G. F. Riley, “Distributed simulation with mpi in
ns-3.” in SIMUTools, 2011, pp. 410–414.

[15] F. Murtagh and P. Contreras, “Algorithms for hierarchical
clustering: an overview,” Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, vol. 2, no. 1, pp. 86–97,
2012.

2024 IEEE International Conference on Communications (ICC): SAC Satellite and Space Communications Track

5615
Authorized licensed use limited to: Tsinghua University. Downloaded on December 12,2024 at 08:46:46 UTC from IEEE Xplore. Restrictions apply.

